Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Drew T. Shindell is active.

Publication


Featured researches published by Drew T. Shindell.


Science | 2009

Global Signatures and Dynamical Origins of the Little Ice Age and Medieval Climate Anomaly

Michael E. Mann; Zhihua Zhang; Scott Rutherford; Raymond S. Bradley; Malcolm K. Hughes; Drew T. Shindell; Caspar M. Ammann; Greg Faluvegi; Fenbiao Ni

Patterns of Change The global climate record of the past 1500 years shows two long intervals of anomalous temperatures before the obvious anthropogenic warming of the 20th century: the warm Medieval Climate Anomaly between roughly 950 and 1250 A.D. and the Little Ice Age between around 1400 and 1700 A.D. It has become increasingly clear in recent years, however, that climate changes inevitably involve a complex pattern of regional changes, whose inhomogeneities contain valuable insights into the mechanisms that cause them. Mann et al. (p. 1256) analyzed proxy records of climate since 500 A.D. and compared their global patterns with model reconstructions. The results identify the large-scale processes—like El Niño and the North Atlantic Oscillation—that can account for the observations and suggest that dynamic responses to variable radiative forcing were their primary causes. The global pattern of warming that characterized the Medieval Climate Anomaly was a dynamical response to solar forcing. Global temperatures are known to have varied over the past 1500 years, but the spatial patterns have remained poorly defined. We used a global climate proxy network to reconstruct surface temperature patterns over this interval. The Medieval period is found to display warmth that matches or exceeds that of the past decade in some regions, but which falls well below recent levels globally. This period is marked by a tendency for La Niña–like conditions in the tropical Pacific. The coldest temperatures of the Little Ice Age are observed over the interval 1400 to 1700 C.E., with greatest cooling over the extratropical Northern Hemisphere continents. The patterns of temperature change imply dynamical responses of climate to natural radiative forcing changes involving El Niño and the North Atlantic Oscillation–Arctic Oscillation.


Journal of Geophysical Research | 2006

Multimodel ensemble simulations of present-day and near-future tropospheric ozone

David S. Stevenson; F. Dentener; Martin G. Schultz; K. Ellingsen; T. van Noije; Oliver Wild; Guang Zeng; M. Amann; C. S. Atherton; N. Bell; D. Bergmann; Isabelle Bey; T. Butler; J. Cofala; W. J. Collins; R. G. Derwent; Ruth M. Doherty; J. Drevet; Henk Eskes; Arlene M. Fiore; M. Gauss; D. A. Hauglustaine; Larry W. Horowitz; Ivar S. A. Isaksen; M. Krol; Jean-Francois Lamarque; M. G. Lawrence; V. Montanaro; Jean-François Müller; G. Pitari

Global tropospheric ozone distributions, budgets, and radiative forcings from an ensemble of 26 state-of-the-art atmospheric chemistry models have been intercompared and synthesized as part of a wider study into both the air quality and climate roles of ozone. Results from three 2030 emissions scenarios, broadly representing optimistic, likely, and pessimistic options, are compared to a base year 2000 simulation. This base case realistically represents the current global distribution of tropospheric ozone. A further set of simulations considers the influence of climate change over the same time period by forcing the central emissions scenario with a surface warming of around 0.7K. The use of a large multimodel ensemble allows us to identify key areas of uncertainty and improves the robustness of the results. Ensemble mean changes in tropospheric ozone burden between 2000 and 2030 for the 3 scenarios range from a 5% decrease, through a 6% increase, to a 15% increase. The intermodel uncertainty (±1 standard deviation) associated with these values is about ±25%. Model outliers have no significant influence on the ensemble mean results. Combining ozone and methane changes, the three scenarios produce radiative forcings of -50, 180, and 300 mW m-2, compared to a CO 2 forcing over the same time period of 800-1100 mW m-2. These values indicate the importance of air pollution emissions in short- to medium-term climate forcing and the potential for stringent/lax control measures to improve/worsen future climate forcing. The model sensitivity of ozone to imposed climate change varies between models but modulates zonal mean mixing ratios by ±5 ppbv via a variety of feedback mechanisms, in particular those involving water vapor and stratosphere-troposphere exchange. This level of climate change also reduces the methane lifetime by around 4%. The ensemble mean year 2000 tropospheric ozone budget indicates chemical production, chemical destruction, dry deposition and stratospheric input fluxes of 5100, 4650, 1000 and 550 Tg(O 3 ) yr-1, respectively. These values are significantly different to the mean budget documented by the Intergovernmental Panel on Climate Change (IPCC) Third Assessment Report (TAR). The mean ozone burden (340 Tg(O 3 )) is 10% larger than the IPCC TAR estimate, while the mean ozone lifetime (22 days) is 10% shorter. Results from individual models show a correlation between ozone burden and lifetime, and each models ozone burden and lifetime respond in similar ways across the emissions scenarios. The response to climate change is much less consistent. Models show more variability in the tropics compared to midlatitudes. Some of the most uncertain areas of the models include treatments of deep tropical convection, including lightning NO x production; isoprene emissions from vegetation and isoprenes degradation chemistry; stratosphere-troposphere exchange; biomass burning; and water vapor concentrations. Copyright 2006 by the American Geophysical Union.


Global Biogeochemical Cycles | 2006

Nitrogen and sulfur deposition on regional and global scales: A multimodel evaluation

Frank Dentener; J. Drevet; Jean-Francois Lamarque; Isabelle Bey; B. Eickhout; Arlene M. Fiore; D. A. Hauglustaine; Larry W. Horowitz; M. Krol; U. C. Kulshrestha; M. G. Lawrence; C. Galy-Lacaux; Sebastian Rast; Drew T. Shindell; David S. Stevenson; T. van Noije; C. S. Atherton; N. Bell; D. Bergman; T. Butler; J. Cofala; B. Collins; Ruth M. Doherty; K. Ellingsen; James N. Galloway; M. Gauss; V. Montanaro; J.-F. Müller; G. Pitari; Jose M. Rodriguez

We use 23 atmospheric chemistry transport models to calculate current and future (2030) deposition of reactive nitrogen (NOy, NHx) and sulfate (SOx) to land and ocean surfaces. The models are driven by three emission scenarios: (1) current air quality legislation (CLE); (2) an optimistic case of the maximum emissions reductions currently technologically feasible (MFR); and (3) the contrasting pessimistic IPCC SRES A2 scenario. An extensive evaluation of the present-day deposition using nearly all information on wet deposition available worldwide shows a good agreement with observations in Europe and North America, where 60–70% of the model-calculated wet deposition rates agree to within ±50% with quality-controlled measurements. Models systematically overestimate NHx deposition in South Asia, and underestimate NOy deposition in East Asia. We show that there are substantial differences among models for the removal mechanisms of NOy, NHx, and SOx, leading to ±1 σ variance in total deposition fluxes of about 30% in the anthropogenic emissions regions, and up to a factor of 2 outside. In all cases the mean model constructed from the ensemble calculations is among the best when comparing to measurements. Currently, 36–51% of all NOy, NHx, and SOx is deposited over the ocean, and 50–80% of the fraction of deposition on land falls on natural (nonagricultural) vegetation. Currently, 11% of the worlds natural vegetation receives nitrogen deposition in excess of the “critical load” threshold of 1000 mg(N) m−2 yr−1. The regions most affected are the United States (20% of vegetation), western Europe (30%), eastern Europe (80%), South Asia (60%), East Asia (40%), southeast Asia (30%), and Japan (50%). Future deposition fluxes are mainly driven by changes in emissions, and less importantly by changes in atmospheric chemistry and climate. The global fraction of vegetation exposed to nitrogen loads in excess of 1000 mg(N) m−2 yr−1 increases globally to 17% for CLE and 25% for A2. In MFR, the reductions in NOy are offset by further increases for NHx deposition. The regions most affected by exceedingly high nitrogen loads for CLE and A2 are Europe and Asia, but also parts of Africa.


Journal of Climate | 2006

Present-Day Atmospheric Simulations Using GISS ModelE: Comparison to In Situ, Satellite, and Reanalysis Data

Gavin A. Schmidt; Reto Ruedy; James E. Hansen; Igor Aleinov; N. Bell; Mike Bauer; Susanne Bauer; Brian Cairns; V. M. Canuto; Y. Cheng; Anthony D. Del Genio; Greg Faluvegi; Andrew D. Friend; Timothy M. Hall; Yongyun Hu; Max Kelley; Nancy Y. Kiang; D. Koch; A. Lacis; Jean Lerner; Ken K. Lo; Ron L. Miller; Larissa Nazarenko; Valdar Oinas; Jan Perlwitz; Judith Perlwitz; David Rind; Anastasia Romanou; Gary L. Russell; Makiko Sato

Abstract A full description of the ModelE version of the Goddard Institute for Space Studies (GISS) atmospheric general circulation model (GCM) and results are presented for present-day climate simulations (ca. 1979). This version is a complete rewrite of previous models incorporating numerous improvements in basic physics, the stratospheric circulation, and forcing fields. Notable changes include the following: the model top is now above the stratopause, the number of vertical layers has increased, a new cloud microphysical scheme is used, vegetation biophysics now incorporates a sensitivity to humidity, atmospheric turbulence is calculated over the whole column, and new land snow and lake schemes are introduced. The performance of the model using three configurations with different horizontal and vertical resolutions is compared to quality-controlled in situ data, remotely sensed and reanalysis products. Overall, significant improvements over previous models are seen, particularly in upper-atmosphere te...


Reviews of Geophysics | 2010

SOLAR INFLUENCES ON CLIMATE

Lesley J. Gray; J. Beer; Marvin A. Geller; Joanna D. Haigh; Mike Lockwood; Katja Matthes; Ulrich Cubasch; Dominik Fleitmann; G. Harrison; L. L. Hood; Jürg Luterbacher; Gerald A. Meehl; Drew T. Shindell; B. van Geel; W. White

The development of this review article has evolved from work carried out by an international team of the International Space Science Institute (ISSI), Bern, Switzerland, and from work carried out under the auspices of Scientific Committee on Solar Terrestrial Physics (SCOSTEP) Climate and Weather of the Sun‐Earth System (CAWSES‐1). The support of ISSI in providing workshop and meeting facilities is acknowledged, especially support from Y. Calisesi and V. Manno. SCOSTEP is acknowledged for kindly providing financial assistance to allow the paper to be published under an open access policy. L.J.G. was supported by the UK Natural Environment Research Council (NERC) through their National Centre for Atmospheric Research (NCAS) Climate program. K.M. was supported by a Marie Curie International Outgoing Fellowship within the 6th European Community Framework Programme. J.L. acknowledges support by the EU/FP7 program Assessing Climate Impacts on the Quantity and Quality of Water (ACQWA, 212250) and from the DFG Project Precipitation in the Past Millennium in Europe (PRIME) within the Priority Program INTERDYNAMIK. L.H. acknowledges support from the U.S. NASA Living With a Star program. G.M. acknowledges support from the Office of Science (BER), U.S. Department of Energy, Cooperative Agreement DE‐FC02‐97ER62402, and the National Science Foundation. We also wish to thank Karin Labitzke and Markus Kunze for supplying an updated Figure 13, Andrew Heaps for technical support, and Paul Dickinson for editorial support. Part of the research was carried out under the SPP CAWSES funded by GFG. J.B. was financially supported by NCCR Climate–Swiss Climate Research.


Nature Geoscience | 2013

Three decades of global methane sources and sinks

Stefanie Kirschke; P. Bousquet; Philippe Ciais; Marielle Saunois; Josep G. Canadell; E. J. Dlugokencky; P. Bergamaschi; D. Bergmann; D. R. Blake; Lori Bruhwiler; Philip Cameron-Smith; Simona Castaldi; F. Chevallier; Liang Feng; A. Fraser; Martin Heimann; E. L. Hodson; Sander Houweling; B. Josse; P. J. Fraser; P. B. Krummel; Jean-Francois Lamarque; R. L. Langenfelds; Corinne Le Quéré; Vaishali Naik; Simon O'Doherty; Paul I. Palmer; I. Pison; David A. Plummer; Benjamin Poulter

Methane is an important greenhouse gas, responsible for about 20% of the warming induced by long-lived greenhouse gases since pre-industrial times. By reacting with hydroxyl radicals, methane reduces the oxidizing capacity of the atmosphere and generates ozone in the troposphere. Although most sources and sinks of methane have been identified, their relative contributions to atmospheric methane levels are highly uncertain. As such, the factors responsible for the observed stabilization of atmospheric methane levels in the early 2000s, and the renewed rise after 2006, remain unclear. Here, we construct decadal budgets for methane sources and sinks between 1980 and 2010, using a combination of atmospheric measurements and results from chemical transport models, ecosystem models, climate chemistry models and inventories of anthropogenic emissions. The resultant budgets suggest that data-driven approaches and ecosystem models overestimate total natural emissions. We build three contrasting emission scenarios-which differ in fossil fuel and microbial emissions-to explain the decadal variability in atmospheric methane levels detected, here and in previous studies, since 1985. Although uncertainties in emission trends do not allow definitive conclusions to be drawn, we show that the observed stabilization of methane levels between 1999 and 2006 can potentially be explained by decreasing-to-stable fossil fuel emissions, combined with stable-to-increasing microbial emissions. We show that a rise in natural wetland emissions and fossil fuel emissions probably accounts for the renewed increase in global methane levels after 2006, although the relative contribution of these two sources remains uncertain.


Science | 2012

Simultaneously Mitigating Near-Term Climate Change and Improving Human Health and Food Security

Drew T. Shindell; Johan Kuylenstierna; E. Vignati; Rita Van Dingenen; M. Amann; Z. Klimont; Susan C. Anenberg; Nicholas Z. Muller; Greet Janssens-Maenhout; Frank Raes; Joel Schwartz; Greg Faluvegi; Luca Pozzoli; Kaarle Kupiainen; Lena Höglund-Isaksson; Lisa Emberson; David G. Streets; V. Ramanathan; Kevin Hicks; N.T. Kim Oanh; George Milly; Martin L. Williams; Volodymyr Demkine; D. Fowler

Why Wait? Tropospheric ozone can be dangerous to human health, can be harmful to vegetation, and is a major contributor to climate warming. Black carbon also has significant negative effects on health and air quality and causes warming of the atmosphere. Shindell et al. (p. 183) present results of an analysis of emissions, atmospheric processes, and impacts for each of these pollutants. Seven measures were identified that, if rapidly implemented, would significantly reduce global warming over the next 50 years, with the potential to prevent millions of deaths worldwide from outdoor air pollution. Furthermore, some crop yields could be improved by decreasing agricultural damage. Most of the measures thus appear to have economic benefits well above the cost of their implementation. Reducing anthropogenic emissions of methane and black carbon would have multiple climate and health benefits. Tropospheric ozone and black carbon (BC) contribute to both degraded air quality and global warming. We considered ~400 emission control measures to reduce these pollutants by using current technology and experience. We identified 14 measures targeting methane and BC emissions that reduce projected global mean warming ~0.5°C by 2050. This strategy avoids 0.7 to 4.7 million annual premature deaths from outdoor air pollution and increases annual crop yields by 30 to 135 million metric tons due to ozone reductions in 2030 and beyond. Benefits of methane emissions reductions are valued at


Science | 2009

Improved Attribution of Climate Forcing to Emissions

Drew T. Shindell; Greg Faluvegi; D. Koch; Gavin A. Schmidt; Nadine Unger; Susanne Bauer

700 to


Nature | 1998

Increased polar stratospheric ozone losses and delayed eventual recovery owing to increasing greenhouse-gas concentrations

Drew T. Shindell; David Rind; Patrick Lonergan

5000 per metric ton, which is well above typical marginal abatement costs (less than


Nature | 1999

Simulation of recent northern winter climate trends by greenhouse-gas forcing

Drew T. Shindell; Ron L. Miller; Gavin A. Schmidt; Lionel Pandolfo

250). The selected controls target different sources and influence climate on shorter time scales than those of carbon dioxide–reduction measures. Implementing both substantially reduces the risks of crossing the 2°C threshold.

Collaboration


Dive into the Drew T. Shindell's collaboration.

Top Co-Authors

Avatar

G. Faluvegi

Goddard Institute for Space Studies

View shared research outputs
Top Co-Authors

Avatar

Jean-Francois Lamarque

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar

Gavin A. Schmidt

Goddard Institute for Space Studies

View shared research outputs
Top Co-Authors

Avatar

Greg Faluvegi

Goddard Institute for Space Studies

View shared research outputs
Top Co-Authors

Avatar

Larry W. Horowitz

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Apostolos Voulgarakis

Goddard Institute for Space Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. Bergmann

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge