Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dror Alishekevitz is active.

Publication


Featured researches published by Dror Alishekevitz.


Cancer Research | 2011

Host Response to Short-term, Single-Agent Chemotherapy Induces Matrix Metalloproteinase-9 Expression and Accelerates Metastasis in Mice

Svetlana Gingis-Velitski; David Loven; Liat Benayoun; Michal Munster; Rotem Bril; Tali Voloshin; Dror Alishekevitz; Francesco Bertolini; Yuval Shaked

Mounting evidence suggests that bone marrow-derived cells (BMDC) contribute to tumor growth, angiogenesis, and metastasis. In acute reactions to cancer therapy, several types of BMDCs are rapidly mobilized to home tumors. Although this host reaction to therapy can promote tumor regrowth, its contribution to metastasis has not been explored. To focus only on the effects of chemotherapy on the host, we studied non-tumor-bearing mice. Plasma from animals treated with the chemotherapy paclitaxel induced angiogenesis, migration, and invasion of tumor cells along with host cell colonization. Lesser effects were seen with the chemotherapy gemcitabine. Conditioned medium from BMDCs and plasma from chemotherapy-treated mice each promoted metastatic properties in tumor cells by inducing matrix metalloproteinase-9 (MMP9) and epithelial-to-mesenchymal transition. In mice in which Lewis lung carcinoma cells were injected intravenously, treatment with paclitaxel, but not gemcitabine or vehicle, accelerated metastases in a manner that could be blocked by an MMP9 inhibitor. Moreover, chimeric mice reconstituted with BMDC where MMP9 activity was attenuated did not support accelerated metastasis by carcinoma cells that were pretreated with chemotherapy before their introduction to host animals. Taken together, our findings illustrate how some chemotherapies can exert prometastatic effects that may confound treatment outcomes.


International Journal of Cardiology | 2015

ATF3-dependent cross-talk between cardiomyocytes and macrophages promotes cardiac maladaptive remodeling.

Lilach Koren; Dror Alishekevitz; Ofer Elhanani; A. Nevelsky; Tsonwin Hai; Izhak Kehat; Yuval Shaked; Ami Aronheim

RATIONALE Pressure overload induces adaptive remodeling processes in the heart. However, when pressure overload persists, adaptive changes turn into maladaptive alterations leading to cardiac hypertrophy and heart failure. ATF3 is a stress inducible transcription factor that is transiently expressed following neuroendocrine stimulation. However, its role in chronic pressure overload dependent cardiac hypertrophy is currently unknown. OBJECTIVE The objective of the study was to study the role of ATF3 in chronic pressure overload dependent cardiac remodeling processes. METHODS AND RESULTS Pressure overload was induced by phenylephrine (PE) mini-osmotic pumps in various mice models of whole body, cardiac specific, bone marrow (BM) specific and macrophage specific ATF3 ablations. We show that ATF3-KO mice exhibit a significantly reduced expression of cardiac remodeling markers following chronic pressure overload. Consistently, the lack of ATF3 specifically in either cardiomyocytes or BM derived cells blunts the hypertrophic response to PE infusion. A unique cross-talk between cardiomyocytes and macrophages was identified. Cardiomyocytes induce an ATF3 dependent induction of an inflammatory response leading to macrophage recruitment to the heart. Adoptive transfer of wild type macrophages, but not ATF3-KO derived macrophages, into wild type mice potentiates maladaptive response to PE infusion. CONCLUSIONS Collectively, this study places ATF3 as a key regulator in promoting pressure overload induced cardiac hypertrophy through a cross-talk between cardiomyocytes and macrophages. Inhibiting this cross-talk may serve as a useful approach to blunt maladaptive remodeling processes in the heart.


Cell Reports | 2016

Macrophage-Induced Lymphangiogenesis and Metastasis following Paclitaxel Chemotherapy Is Regulated by VEGFR3

Dror Alishekevitz; Svetlana Gingis-Velitski; Orit Kaidar-Person; Lilach Gutter-Kapon; Sandra D. Scherer; Ziv Raviv; Emmanuelle Merquiol; Yael Ben-Nun; Valeria Miller; Chen Rachman-Tzemah; Michael Timaner; Yelena Mumblat; Neta Ilan; David Loven; Dov Hershkovitz; Ronit Satchi-Fainaro; Galia Blum; Jonathan P. Sleeman; Israel Vlodavsky; Yuval Shaked

Summary While chemotherapy strongly restricts or reverses tumor growth, the response of host tissue to therapy can counteract its anti-tumor activity by promoting tumor re-growth and/or metastases, thus limiting therapeutic efficacy. Here, we show that vascular endothelial growth factor receptor 3 (VEGFR3)-expressing macrophages infiltrating chemotherapy-treated tumors play a significant role in metastasis. They do so in part by inducing lymphangiogenesis as a result of cathepsin release, leading to VEGF-C upregulation by heparanase. We found that macrophages from chemotherapy-treated mice are sufficient to trigger lymphatic vessel activity and structure in naive tumors in a VEGFR3-dependent manner. Blocking VEGF-C/VEGFR3 axis inhibits the activity of chemotherapy-educated macrophages, leading to reduced lymphangiogenesis in treated tumors. Overall, our results suggest that disrupting the VEGF-C/VEGFR3 axis not only directly inhibits lymphangiogenesis but also blocks the pro-metastatic activity of macrophages in chemotherapy-treated mice.


International Journal of Cancer | 2014

Tumor‐derived microparticles induce bone marrow‐derived cell mobilization and tumor homing: A process regulated by osteopontin

Ella Fremder; Michal Munster; Anat Aharon; Valeria Miller; Svetlana Gingis-Velitski; Tali Voloshin; Dror Alishekevitz; Rotem Bril; Stefan J. Scherer; David Loven; Benjamin Brenner; Yuval Shaked

Acute chemotherapy can induce rapid bone‐marrow derived pro‐angiogenic cell (BMDC) mobilization and tumor homing, contributing to tumor regrowth. To study the contribution of tumor cells to tumor regrowth following therapy, we focused on tumor‐derived microparticles (TMPs). EMT/6 murine‐mammary carcinoma cells exposed to paclitaxel chemotherapy exhibited an increased number of TMPs and significantly altered their angiogenic properties. Similarly, breast cancer patients had increased levels of plasma MUC‐1+TMPs following chemotherapy. In addition, TMPs from cells exposed to paclitaxel induced higher BMDC mobilization and colonization, but had no increased effect on angiogenesis in Matrigel plugs and tumors than TMPs from untreated cells. Since TMPs abundantly express osteopontin, a protein known to participate in BMDC trafficking, the impact of osteopontin‐depleted TMPs on BMDC mobilization, colonization, and tumor angiogenesis was examined. Although EMT/6 tumors grown in mice inoculated with osteopontin‐depleted TMPs had lower numbers of BMDC infiltration and microvessel density when compared with EMT/6 tumors grown in mice inoculated with wild‐type TMPs, no significant difference in tumor growth was seen between the two groups. However, when BMDCs from paclitaxel‐treated mice were injected into wild‐type EMT/6‐bearing mice, a substantial increase in tumor growth and BMDC infiltration was detected compared to osteopontin‐depleted EMT/6‐bearing mice injected with BMDCs from paclitaxel‐treated mice. Collectively, our results suggest that osteopontin expressed by TMPs play an important role in BMDC mobilization and colonization of tumors, but is not sufficient to enhance the angiogenic activity in tumors.


Molecular Cancer Therapeutics | 2015

Blocking IL1β Pathway Following Paclitaxel Chemotherapy Slightly Inhibits Primary Tumor Growth but Promotes Spontaneous Metastasis

Tali Voloshin; Dror Alishekevitz; Limor Kaneti; Valeria Miller; Elina Isakov; Irena Kaplanov; Elena Voronov; Ella Fremder; Moran Benhar; Marcelle Machluf; Ron N. Apte; Yuval Shaked

Acquired resistance to therapy is a major obstacle in clinical oncology, and little is known about the contributing mechanisms of the host response to therapy. Here, we show that the proinflammatory cytokine IL1β is overexpressed in response to paclitaxel chemotherapy in macrophages, subsequently promoting the invasive properties of malignant cells. In accordance, blocking IL1β, or its receptor, using either genetic or pharmacologic approach, results in slight retardation of primary tumor growth; however, it accelerates metastasis spread. Tumors from mice treated with combined therapy of paclitaxel and the IL1 receptor antagonist anakinra exhibit increased number of M2 macrophages and vessel leakiness when compared with paclitaxel monotherapy-treated mice, indicating a prometastatic role of M2 macrophages in the IL1β-deprived microenvironment. Taken together, these findings demonstrate the dual effects of blocking the IL1 pathway on tumor growth. Accordingly, treatments using “add-on” drugs to conventional therapy should be investigated in appropriate tumor models consisting of primary tumors and their metastases. Mol Cancer Ther; 14(6); 1385–94. ©2015 AACR.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Heparanase is required for activation and function of macrophages

Lilach Gutter-Kapon; Dror Alishekevitz; Yuval Shaked; Jin-Ping Li; Ami Aronheim; Neta Ilan; Israel Vlodavsky

Significance The tumor microenvironment is now considered to play a major role in cancer growth and metastasis. Heparanase is the only enzyme in mammals capable of cleaving heparan sulfate, an activity that is highly implicated in tumor growth, metastasis, and inflammation. Here we provide evidence that heparanase is critically required for the activation and function of macrophages, an important constituent of the tumor microenvironment. Mechanistically, we describe a linear cascade by which heparanase activates Erk, p38, and JNK signaling in macrophages, leading to increased c-Fos levels and induction of cytokine expression in a manner that apparently does not require heparanase enzymatic activity. These results identify heparanase as a key mediator of macrophage activation and function in tumorigenesis and cross-talk with the tumor microenvironment. The emerging role of heparanase in tumor initiation, growth, metastasis, and chemoresistance is well recognized and is encouraging the development of heparanase inhibitors as anticancer drugs. Unlike the function of heparanase in cancer cells, very little attention has been given to heparanase contributed by cells composing the tumor microenvironment. Here we used a genetic approach and examined the behavior and function of macrophages isolated from wild-type (WT) and heparanase-knockout (Hpa-KO) mice. Hpa-KO macrophages express lower levels of cytokines (e.g., TNFα, IL1-β) and exhibit lower motility and phagocytic capacities. Intriguingly, inoculation of control monocytes together with Lewis lung carcinoma (LLC) cells into Hpa-KO mice resulted in nearly complete inhibition of tumor growth. In striking contrast, inoculating LLC cells together with monocytes isolated from Hpa-KO mice did not affect tumor growth, indicating that heparanase is critically required for activation and function of macrophages. Mechanistically, we describe a linear cascade by which heparanase activates Erk, p38, and JNK signaling in macrophages, leading to increased c-Fos levels and induction of cytokine expression in a manner that apparently does not require heparanase enzymatic activity. These results identify heparanase as a key mediator of macrophage activation and function in tumorigenesis and cross-talk with the tumor microenvironment.


Oncotarget | 2015

Dequalinium blocks macrophage-induced metastasis following local radiation

Michael Timaner; Rotem Bril; Orit Kaidar-Person; Chen Rachman-Tzemah; Dror Alishekevitz; Ruslana Kotsofruk; Valeria Miller; Alexander Nevelsky; Shahar Daniel; Ziv Raviv; Susan A. Rotenberg; Yuval Shaked

A major therapeutic obstacle in clinical oncology is intrinsic or acquired resistance to therapy, leading to subsequent relapse. We have previously shown that systemic administration of different cytotoxic drugs can induce a host response that contributes to tumor angiogenesis, regrowth and metastasis. Here we characterize the host response to a single dose of local radiation, and its contribution to tumor progression and metastasis. We show that plasma from locally irradiated mice increases the migratory and invasive properties of colon carcinoma cells. Furthermore, locally irradiated mice intravenously injected with CT26 colon carcinoma cells succumb to pulmonary metastasis earlier than their respective controls. Consequently, orthotopically implanted SW480 human colon carcinoma cells in mice that underwent radiation, exhibited increased metastasis to the lungs and liver compared to their control tumors. The irradiated tumors exhibited an increase in the colonization of macrophages compared to their respective controls; and macrophage depletion in irradiated tumor-bearing mice reduces the number of metastatic lesions. Finally, the anti-tumor agent, dequalinium-14, in addition to its anti-tumor effect, reduces macrophage motility, inhibits macrophage infiltration of irradiated tumors and reduces the extent of metastasis in locally irradiated mice. Overall, this study demonstrates the adverse effects of local radiation on the host that result in macrophage-induced metastasis.


Molecular Cancer Therapeutics | 2014

Differential Therapeutic Effects of Anti–VEGF-A Antibody in Different Tumor Models: Implications for Choosing Appropriate Tumor Models for Drug Testing

Dror Alishekevitz; Rotem Bril; David Loven; Valeria Miller; Tali Voloshin; Svetlana Gingis-Velistki; Ella Fremder; Stefan J. Scherer; Yuval Shaked

We previously reported that the host response to certain chemotherapies can induce primary tumor regrowth, angiogenesis, and even metastases in mice, but the possible impact of anti–VEGF-A therapy in this context has not been fully explored. We, therefore, used combinations of anti–VEGF-A with chemotherapy on various tumor models in mice, including primary tumors, experimental lung metastases, and spontaneous lung metastases of 4T1-breast and CT26-colon murine cancer cell lines. Our results show that a combined treatment with anti–VEGF-A and folinic acid/5-fluorouracil/oxaliplatin (FOLFOX) but not with anti–VEGF-A and gemcitabine/cisplatinum (Gem/CDDP) enhances the treatment outcome partly due to reduced angiogenesis, in both primary tumors and experimental lung metastases models. However, neither treatment group exhibited an improved treatment outcome in the spontaneous lung metastases model, nor were changes in endothelial cell numbers found at metastatic sites. As chemotherapy has recently been shown to induce tumor cell invasion, we tested the invasion properties of tumor cells when exposed to plasma from FOLFOX-treated mice or patients with cancer. While plasma from FOLFOX-treated mice or patients induced invasion properties of tumor cells, the combination of anti–VEGF-A and FOLFOX abrogated these effects, despite the reduced plasma VEGF-A levels detected in FOLFOX-treated mice. These results suggest that the therapeutic impact of antiangiogenic drugs varies in different tumor models, and that anti–VEGF-A therapy can block the invasion properties of tumor cells in response to chemotherapy. These results may implicate an additional therapeutic role for anti–VEGF-A when combined with chemotherapy. Mol Cancer Ther; 13(1); 202–13. ©2013 AACR.


The Journal of Pathology | 2016

Bortezomib-induced pro-inflammatory macrophages as a potential factor limiting anti-tumour efficacy

Ofrat Beyar-Katz; Ksenia Magidey; Neta Ben-Tsedek; Dror Alishekevitz; Michael Timaner; Valeria Miller; Moshit Lindzen; Yosef Yarden; Irit Avivi; Yuval Shaked

Multiple myeloma (MM) is a chronic progressive malignancy of plasma cells. Although treatment with the novel proteasome inhibitor, bortezomib, significantly improves patient survival, some patients fail to respond due to the development of de novo resistance. We have previously shown that cytotoxic drugs can induce pro‐tumorigenic host‐mediated effects which contribute to tumour re‐growth and metastasis, and thus limit anti‐tumour efficacy. However, such effects and their impact on tumour cell aggressiveness have not been investigated using cytostatic agents such as bortezomib. Here we show that plasma from bortezomib‐treated mice significantly increases migration, viability and proliferation of MM cells in vitro, compared to plasma from vehicle treated mice. In vivo, bortezomib induces the mobilization of pro‐angiogenic bone marrow cells. Furthermore, mice treated with bortezomib and subsequently were used as recipients for an injection of MM cells succumb to MM earlier than mice treated with the vehicle. We show that bortezomib promotes pro‐inflammatory macrophages which account for MM cell aggressiveness, an effect which is partially mediated by interleukin‐16. Accordingly, co‐inoculation of MM cells with pro‐inflammatory macrophages from bortezomib‐treated mice accelerates MM disease progression. Taken together, our results suggest that, in addition to the known effective anti‐tumour activity of bortezomib, host‐driven pro‐tumorigenic effects generated in response to treatment can promote MM aggressiveness, and thus may contribute to the overall limited efficacy. Copyright


Oncotarget | 2015

Host JDP2 expression in the bone marrow contributes to metastatic spread

Yelena Barbarov; Michael Timaner; Dror Alishekevitz; Tsonwin Hai; Kazunari K. Yokoyama; Yuval Shaked; Ami Aronheim

The c-Jun Dimerization Protein 2, JDP2, is a basic leucine zipper protein member of the activator protein-1 (AP-1) family of transcription factors. JDP2 typically suppresses gene transcription through multiple mechanisms and plays a dual role in multiple cellular processes, including cell differentiation and proliferation which is dependent on AP-1 function. Whereas the role of JDP2 expression within cancer cells has been studied, its role in stromal cells at the tumor microenvironment is largely unknown. Here we show that mice lacking JDP2 (JDP2−/−) display a reduced rate of metastasis in Lewis lung carcinoma (LLC) and polyoma middle T-antigen (PyMT) breast carcinoma mouse models. The replacement of wild-type bone marrow derived cells (BMDCs) with JDP2-deficient BMDCs recapitulates the metastatic phenotype of JDP2−/− tumor-bearing mice. In vitro, conditioned medium of wild-type BMDCs significantly potentiates the migration and invasion capacity of LLC cells as compared to that of JDP2−/− BMDCs. Furthermore, wild-type BMDCs secrete CCL5, a chemokine known to contribute to metastasis, to a greater extent than JDP2−/− BMDCs. The supplementation of CCL5 in JDP2−/− BMDC conditioned medium was sufficient to potentiate the invasion capacity of LLC. Overall, this study suggests that JDP2-expressing BMDCs within the tumor microenvironment contribute to metastatic spread.

Collaboration


Dive into the Dror Alishekevitz's collaboration.

Top Co-Authors

Avatar

Yuval Shaked

Technion – Israel Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Valeria Miller

Rappaport Faculty of Medicine

View shared research outputs
Top Co-Authors

Avatar

Rotem Bril

Technion – Israel Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Michael Timaner

Technion – Israel Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Tali Voloshin

Technion – Israel Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Ella Fremder

Technion – Israel Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ziv Raviv

Rappaport Faculty of Medicine

View shared research outputs
Top Co-Authors

Avatar

Ami Aronheim

Technion – Israel Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge