Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Du-Hyong Cho is active.

Publication


Featured researches published by Du-Hyong Cho.


Journal of Biological Chemistry | 2004

Nitric Oxide Production and Regulation of Endothelial Nitric-oxide Synthase Phosphorylation by Prolonged Treatment with Troglitazone EVIDENCE FOR INVOLVEMENT OF PEROXISOME PROLIFERATOR-ACTIVATED RECEPTOR (PPAR) γ-DEPENDENT AND PPARγ-INDEPENDENT SIGNALING PATHWAYS

Du-Hyong Cho; Yoon Jung Choi; Sangmee Ahn Jo; Inho Jo

Recently, peroxisome proliferator-activated receptor γ (PPARγ) ligands have been reported to increase endothelial NO, but the signaling mechanisms involved are unknown. Using troglitazone, a PPARγ ligand known as an antidiabetic compound, we investigated the molecular mechanism of its effect on NO production in bovine aortic endothelial cells. Troglitazone increased endothelial NO production in a dose- and time-dependent manner with no alteration in endothelial nitric-oxide synthase (eNOS) expression. The maximal increase (∼3.1-fold) was achieved with 20 μm troglitazone treatment for 12 h, and this increase was accompanied by increases in the expression of vascular endothelial growth factor (VEGF) and its receptor, KDR/Flk-1, and in Akt phosphorylation. Analysis with antibodies specific for each phosphorylated site demonstrated that troglitazone (20 μm treatment for 12 h) significantly increased both the phosphorylation of Ser1179 of eNOS (eNOS-Ser1179) and the dephosphorylation of eNOS-Ser116 but did not alter eNOS-Thr497 phosphorylation. Treatment with anti-VEGF antibody to scavenge the increased VEGF induced by troglitazone partially inhibited troglitazone-stimulated NO production. This was accompanied by the attenuation of troglitazone-stimulated increases in the phosphorylation of Akt and eNOS-Ser1179 with no alteration in eNOS-Ser116 dephosphorylation. We also found that bisphenol A diglycidyl ether, a PPARγ antagonist, partially inhibited troglitazone-stimulated NO production with a concomitant reduction in VEGF-KDR/Flk-1-Akt-mediated eNOS-Ser1179 phosphorylation but with no alteration in eNOS-Ser116 dephosphorylation induced by troglitazone. Taken together, our results demonstrate that prolonged treatment with troglitazone increases endothelial NO production by at least two independent signaling pathways: PPARγ-dependent, VEGF-KDR/Flk-1-Akt-mediated eNOS-Ser1179 phosphorylation and PPARγ-independent, eNOS-Ser116 dephosphorylation.


Nitric Oxide | 2013

Uric acid attenuates nitric oxide production by decreasing the interaction between endothelial nitric oxide synthase and calmodulin in human umbilical vein endothelial cells: A mechanism for uric acid-induced cardiovascular disease development

Jung-Hyun Park; Yoon Mi Jin; Soojin Hwang; Du-Hyong Cho; Duk-Hee Kang; Inho Jo

The elevated level of uric acid in the body is associated with increased risk of cardiovascular diseases, which is mediated by endothelial dysfunction. However, its underlying mechanism is not fully understood, although dysregulation of endothelial nitric oxide (NO) production is likely to be involved. Using human umbilical vascular endothelial cells (HUVEC), we explored the molecular mechanism of uric acid on endothelial NO synthase (eNOS) activity and NO production. Although high dose of uric acid (12mg/dl for 24h treatment) significantly decreased eNOS activity and NO production, it did not alter eNOS expression and phosphorylations at eNOS-Ser(1177), eNOS-Thr(495) and eNOS-Ser(114). Under this condition, we also found no alterations in the dimerization and acetylation of eNOS, compared with the control. Furthermore, uric acid did not change the activity of arginase II, an enzyme degrading l-arginine, a substrate of eNOS, and intracellular level of calcium, a cofactor for eNOS activation. We also found that uric acid did not alter xanthine oxidase activity, suggesting no involvement of xanthine oxidase-derived O2(-) production in the observed inhibitory effects. In vitro and in cell coimmunoprecipitation studies, however, revealed that uric acid significantly decreased the interaction between eNOS and calmodulin (CaM), an eNOS activator, although it did not change the intracellular CaM level. Like in HUVEC, uric acid also decreased eNOS-CaM interaction in bovine aortic EC. Finally, uric acid attenuated ionomycin-induced increase in the interaction between eNOS and CaM. This study suggests firstly that uric acid decreased eNOS activity and NO production through reducing the binding between eNOS and CaM in EC. Our result may provide molecular mechanism by which uric acid induces endothelial dysfunction.


Biochemical and Biophysical Research Communications | 2013

Far-infrared radiation acutely increases nitric oxide production by increasing Ca2+ mobilization and Ca2+/calmodulin-dependent protein kinase II-mediated phosphorylation of endothelial nitric oxide synthase at serine 1179

Jung-Hyun Park; Sangmi Lee; Du-Hyong Cho; Young Mi Park; Duk-Hee Kang; Inho Jo

Repeated thermal therapy manifested by far-infrared (FIR) radiation improves vascular function in both patients and mouse model with coronary heart disease, but its underlying mechanism is not fully understood. Using FIR as a thermal therapy agent, we investigate the molecular mechanism of its effect on endothelial nitric oxide synthase (eNOS) activity and NO production. FIR increased the phosphorylation of eNOS at serine 1179 (eNOS-Ser(1179)) in a time-dependent manner (up to 40min of FIR radiation) in bovine aortic endothelial cells (BAEC) without alterations in eNOS expression. This increase was accompanied by increases in NO production and intracellular Ca(2+) levels. Treatment with KN-93, a selective inhibitor of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) and H-89, a protein kinase A inhibitor, inhibited FIR radiation-stimulated eNOS-Ser(1179) phosphorylation. FIR radiation itself also increased the temperature of culture medium. As transient receptors potential vanilloid (TRPV) ion channels are known to be temperature-sensitive calcium channels, we explore whether TRPV channels mediate these observed effects. Reverse transcription-PCR assay revealed two TRPV isoforms in BAEC, TRPV2 and TRPV4. Although ruthenium red, a pan-TRPV inhibitor, completely reversed the observed effect of FIR radiation, a partial attenuation (∼20%) was found in cells treated with Tranilast, TRPV2 inhibitor. However, ectopic expression of siRNA of TRPV2 showed no significant alteration in FIR radiation-stimulated eNOS-Ser(1179) phosphorylation. This study suggests that FIR radiation increases NO production via increasing CaMKII-mediated eNOS-Ser(1179) phosphorylation but TRPV channels may not be involved in this pathway. Our results may provide the molecular mechanism by which FIR radiation improves endothelial function.


Hypertension | 2010

Cyclin-Dependent Kinase 5 Phosphorylates Endothelial Nitric Oxide Synthase at Serine 116

Du-Hyong Cho; Jungwon Seo; Junghyun Park; Chulman Jo; Yoon Jung Choi; Jae-Won Soh; Inho Jo

Nitric oxide (NO) production in endothelial cells (EC) is regulated by multisite phosphorylation of specific serine and threonine residues in endothelial NO synthase (eNOS). Among these, eNOS-Ser116 is phosphorylated in the basal state, and its phosphorylation contributes to basal NO production. Here, we investigated the mechanism by which eNOS-Ser116 is phosphorylated during the basal state using bovine aortic EC. Although a previous study suggested that protein kinase C was involved in eNOS-Ser116 phosphorylation, overexpression of various protein kinase C isoforms did not affect eNOS-Ser116 phosphorylation. An in silico analysis using a motif scan revealed that the eNOS-Ser116 residue might be a substrate for proline-directed protein kinases. Roscovitine, a specific inhibitor of cyclin-dependent kinase (CDK), 1, 2, and 5, but not an inhibitor of mitogen-activated protein kinase kinase or glycogen synthase kinase 3&bgr;, inhibited eNOS-Ser116 phosphorylation dose dependently. Furthermore, purified CDK1, 2, or 5 directly phosphorylated eNOS-Ser116 in vitro. Ectopic expression of the dominant-negative CDK5 but not dominant-negative CDK1 or dominant-negative CDK2 repressed eNOS-Ser116 phosphorylation and increased NO production. In addition, CDK5 activity was detected in bovine aortic EC, and coimmunoprecipitation and confocal microscopy studies revealed a colocalization of eNOS and CDK5. Cotransfection of CDK5 and p25, the specific CDK5 activator, increased eNOS-Ser116 phosphorylation and decreased NO production, but its parent molecule, p35, and p39, another activator, were not detected in bovine aortic EC, which suggests the existence of a novel CDK5 activator. Overall, this is the first study to find that CDK5 is a physiological kinase responsible for eNOS-Ser116 phosphorylation and regulation of NO production.


Journal of Neurochemistry | 2013

Troglitazone, a thiazolidinedione, decreases tau phosphorylation through the inhibition of cyclin‐dependent kinase 5 activity in SH‐SY5Y neuroblastoma cells and primary neurons

Du-Hyong Cho; Eun Joo Lee; Kyoung Ja Kwon; Chan Young Shin; Kee-Ho Song; Jung-Hyun Park; Inho Jo; Seol-Heui Han

The peroxisome proliferator‐activated receptor gamma (PPARγ) agonists thiazolidinediones (TZDs) are prescribed for the treatment of type 2 diabetes mellitus. Furthermore, it has been reported that TZDs have a beneficial effect on neurodegenerative disorders, such as Alzheimers disease. However, the molecular mechanisms underlying this effect are not fully understood. Here, we investigated whether and how troglitazone, a parent TZD drug, inhibits tau phosphorylation. Treatment with troglitazone decreased tau‐Thr231 phosphorylation and p35, the specific activator of cyclin‐dependent kinase 5 (CDK5), in a dose‐ and time‐dependent manner. Troglitazone also decreased CDK5 enzymatic activity, and ectopic expression of p25, the cleaved and more active form of p35, restored the troglitazone‐induced decrease in tau‐Thr231 phosphorylation. Treatment with either MG‐132, a reversible proteasome inhibitor, or lactacystin, a specific and irreversible 26S proteasome inhibitor, significantly reversed the observed inhibitory effects of troglitazone. However, GW9662, a specific and irreversible PPARγ antagonist, did not alter the observed inhibitory effects. Similar results were also found when other TZD drugs, pioglitazone and rosiglitazone, were used. Treatment with various inhibitors revealed that troglitazone‐induced inhibitions of tau‐Thr231 phosphorylation and p35 expression were not mediated by glycogen synthase kinase 3β, protein kinase A, and protein phosphatase 2A signaling pathways. Finally, we also found that the same observed inhibitory effects of troglitazone hold true for the use of primary cortical neurons. Taken together, we demonstrated that TZDs repressed tau‐Thr231 phosphorylation via the inhibition of CDK5 activity, which was mediated by the proteasomal degradation of p35 and a PPARγ‐independent signaling pathway.


Free Radical Biology and Medicine | 2014

Valproic acid increases NO production via the SH-PTP1–CDK5–eNOS-Ser116 signaling cascade in endothelial cells and mice

Du-Hyong Cho; Jung-Hyun Park; Eun Joo Lee; Kyung Jong Won; Sang-Hee Lee; Yang-Hoon Kim; Soojin Hwang; Kyoung Ja Kwon; Chan Young Shin; Kee-Ho Song; Inho Jo; Seol-Heui Han

Valproic acid (VPA) with its inhibitory activity of histone deacetylase has been used in the treatment of epilepsy and bipolar disorder associated with cerebrovascular dysfunction. Because nitric oxide (NO) produced by endothelial NO synthase (eNOS) plays a role in the maintenance of vascular function, NO is likely to mediate VPA׳s drug effect, but its effect on NO production remains controversial. We investigated whether and how VPA regulates NO production in bovine aortic endothelial cells (BAECs) and mice. VPA increased NO production in BAECs, which was accompanied by a decrease in phosphorylation of eNOS at serine 116 (eNOS-Ser(116)) and cyclin-dependent kinase 5 at tyrosine 15 (CDK5-Tyr(15)). Ectopic expression of p25, a CDK5 activator, restored the VPA-inhibited eNOS-Ser(116) phosphorylation. In silico analysis revealed that the CDK5-Tyr(15) residue might be a substrate for SH2 domain-containing protein tyrosine phosphatase 1 (SH-PTP1), and CDK5 actually interacted with SH-PTP1. VPA increased SH-PTP1 expression and its activity. Stibogluconate, a specific SH-PTP1 inhibitor, reversed the VPA-inhibited phosphorylation of CDK5-Tyr(15) and eNOS-Ser(116). Knockdown of SH-PTP1 using small interfering RNA also reversed all the observed effects of VPA. Finally, both serum NO level and acetylcholine-induced aortic relaxation increased in VPA-medicated male mice. These increases were accompanied by increased SH-PTP1 expression and decreased phosphorylation of CDK5-Tyr(15) and eNOS-Ser(116) in mouse aortas. In conclusion, VPA increases NO production by inhibiting the CDK5-Tyr(15)-eNOS-Ser(116) phosphorylation axis; this process is mediated by SH-PTP1. VPA may be useful in the treatment of NO-related cerebrocardiovascular diseases.


FEBS Journal | 2013

Trichostatin A epigenetically increases calpastatin expression and inhibits calpain activity and calcium‐induced SH‐SY5Y neuronal cell toxicity

Jungwon Seo; Sangmee Ahn Jo; Soojin Hwang; Catherine Jeonghae Byun; Hyeon-Ju Lee; Du-Hyong Cho; Dueon Kim; Young Ho Koh; Inho Jo

Calpains are involved in calcium‐induced neuronal cell toxicity, which is associated with the pathophysiology of Alzheimers disease (AD). The activity of calpains is regulated by the inhibitor calpastatin, and increased activity of calpains and decreased calpastastin are often found in AD. Histone deacetylase (HDAC) inhibitors are implicated in AD treatment through the improvement of learning and memory but the underlying mechanism is yet to be understood. Here, using SH‐SY5Y neuroblastoma cells and a calcium ionophore ionomycin, we examined whether and how HDAC inhibitor trichostatin A (TSA) inhibits calcium‐induced neuronal cell death. TSA increased both the mRNA and protein levels of calpastatin, with no alterations in those of calpain 1 and calpain 2. Furthermore, TSA‐stimulated increase of calpastatin was accompanied by a significant attenuation of ionomycin‐induced autolysis of calpain 1, but not of calpain 2, and calpain‐dependent 150 kDa αII spectrin cleavage. Under these conditions, however, caspase activity was unaltered. Moreover, ectopic expression of small interfering RNA of calpastatin reversed the inhibitory effect of TSA on ionomycin‐induced calpain 1 autolysis and αII spectrin cleavage. Chromatin immunoprecipitation assay revealed the increased levels of acetylation at lysine 5 of histone H4 (H4K5‐Ac), H3K9‐Ac and H3K14‐Ac within the calpastatin promoter region in TSA‐treated cells relative to control cells. Finally, TSA significantly decreased ionomycin‐induced cell toxicity. This study demonstrates that TSA attenuates calcium‐induced neuronal cell death by the inhibition of calpain activity which is mediated in part by increased calpastatin expression via histone hyperacetylation within the calpastatin promoter region. Our study provides a novel mechanism for the neuroprotective effect of HDAC inhibitors on AD.


Biomolecules & Therapeutics | 2014

Arsenite Acutely Decreases Nitric Oxide Production via the ROS-Protein Phosphatase 1-Endothelial Nitric Oxide Synthase-Thr 497 Signaling Cascade

Jungwon Seo; Jee Young Lee; Min-Sun Sung; Catherine Jeonghae Byun; Du-Hyong Cho; Hyeonju Lee; Jung-Hyun Park; Ho-Seong Cho; Sung-Jin Cho; Inho Jo

Chronic (>24 h) exposure of arsenite, an environmental toxicant, has shown the decreased nitric oxide (NO) production in endothelial cells (EC) by decreasing endothelial NO synthase (eNOS) expression and/or its phosphorylation at serine 1179 (eNOS-Ser1179 in bovine sequence), which is associated with increased risk of vascular diseases. Here, we investigated the acute (<24 h) effect of arsenite on NO production using bovine aortic EC (BAEC). Arsenite acutely increased the phosphorylation of eNOS-Thr497, but not of eNOS-Ser116 or eNOS-Ser1179, which was accompanied by decreased NO production. The level of eNOS expression was unaltered under this condition. Treatment with arsenite also induced reactive oxygen species (ROS) production, and pretreatment with a ROS scavenger N-acetyl-L-cysteine (NAC) completely reversed the observed effect of arsenite on eNOS-Thr497 phosphorylation. Although protein kinase C (PKC) and protein phosphatase 1 (PP1) were reported to be involved in eNOS-Thr497 phosphorylation, treatment with PKC inhibitor, Ro318425, and overexpression of various PKC isoforms did not affect the arsenite-stimulated eNOS-Thr497 phosphorylation. In contrast, treatment with PP1 inhibitor, calyculin A, mimicked the observed effect of arsenite on eNOS-Thr497 phosphorylation. Lastly, we found decreased cellular PP1 activity in arsenite-treated cells, which was reversed by NAC. Overall, our study demonstrates firstly that arsenite acutely decreases NO production at least in part by increasing eNOS-Thr497 phosphorylation via ROS-PP1 signaling pathway, which provide the molecular mechanism underlying arsenite-induced increase in vascular disease.


American Journal of Physiology-cell Physiology | 2006

Troglitazone acutely inhibits protein synthesis in endothelial cells via a novel mechanism involving protein phosphatase 2A-dependent p70 S6 kinase inhibition

Du-Hyong Cho; Yoon Jung Choi; Sangmee Ahn Jo; Jungsang Ryou; Jin Yi Kim; Jongkyeong Chung; Inho Jo


Biochemical and Biophysical Research Communications | 2005

Retinoic acid decreases nitric oxide production in endothelial cells: a role of phosphorylation of endothelial nitric oxide synthase at Ser1179

Du-Hyong Cho; Yoon Jung Choi; Sangmee Ahn Jo; Jae-Hwan Nam; Sung-Chul Jung; Inho Jo

Collaboration


Dive into the Du-Hyong Cho's collaboration.

Top Co-Authors

Avatar

Inho Jo

Ewha Womans University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jungwon Seo

Ewha Womans University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge