Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Du Zhang is active.

Publication


Featured researches published by Du Zhang.


Journal of the American Chemical Society | 2016

All The Catalytic Active Sites of MoS2 for Hydrogen Evolution

Guoqing Li; Du Zhang; Qiao Qiao; Yifei Yu; David T. Peterson; Abdullah Zafar; Raj Kumar; Stefano Curtarolo; Frank Hunte; Steve Shannon; Yimei Zhu; Weitao Yang; Linyou Cao

MoS2 presents a promising low-cost catalyst for the hydrogen evolution reaction (HER), but the understanding about its active sites has remained limited. Here we present an unambiguous study of the catalytic activities of all possible reaction sites of MoS2, including edge sites, sulfur vacancies, and grain boundaries. We demonstrate that, in addition to the well-known catalytically active edge sites, sulfur vacancies provide another major active site for the HER, while the catalytic activity of grain boundaries is much weaker. The intrinsic turnover frequencies (Tafel slopes) of the edge sites, sulfur vacancies, and grain boundaries are estimated to be 7.5 s-1 (65-75 mV/dec), 3.2 s-1 (65-85 mV/dec), and 0.1 s-1 (120-160 mV/dec), respectively. We also demonstrate that the catalytic activity of sulfur vacancies strongly depends on the density of the vacancies and the local crystalline structure in proximity to the vacancies. Unlike edge sites, whose catalytic activity linearly depends on the length, sulfur vacancies show optimal catalytic activities when the vacancy density is in the range of 7-10%, and the number of sulfur vacancies in high crystalline quality MoS2 is higher than that in low crystalline quality MoS2, which may be related with the proximity of different local crystalline structures to the vacancies.


Nature Communications | 2017

Product selectivity in plasmonic photocatalysis for carbon dioxide hydrogenation

Xiao Zhang; Xueqian Li; Du Zhang; Neil Qiang Su; Weitao Yang; Henry O. Everitt; Jie Liu

Photocatalysis has not found widespread industrial adoption, in spite of decades of active research, because the challenges associated with catalyst illumination and turnover outweigh the touted advantages of replacing heat with light. A demonstration that light can control product selectivity in complex chemical reactions could prove to be transformative. Here, we show how the recently demonstrated plasmonic behaviour of rhodium nanoparticles profoundly improves their already excellent catalytic properties by simultaneously reducing the activation energy and selectively producing a desired but kinetically unfavourable product for the important carbon dioxide hydrogenation reaction. Methane is almost exclusively produced when rhodium nanoparticles are mildly illuminated as hot electrons are injected into the anti-bonding orbital of a critical intermediate, while carbon monoxide and methane are equally produced without illumination. The reduced activation energy and super-linear dependence on light intensity cause the unheated photocatalytic methane production rate to exceed the thermocatalytic rate at 350 °C.


Journal of the American Chemical Society | 2017

Activating MoS2 for pH-Universal Hydrogen Evolution Catalysis

Guoqing Li; Du Zhang; Yifei Yu; Shengyang Huang; Weitao Yang; Linyou Cao

MoS2 presents a promising catalyst for the hydrogen evolution reaction (HER) in water splitting, but its worse catalytic performance in neutral and alkaline media than in acidic environment may be problematic for practical application. This is because the other half reaction of water splitting, i.e., oxygen evolution reaction, often needs to be implemented in alkaline environment. Here we demonstrate a universal strategy that may be used to significantly improve the HER catalysis of MoS2 in all kinds of environments from acidic to alkaline, proton intercalation. Protons may be enabled to intercalate between monolayer MoS2 and underlying substrates or in the interlayer space of thicker MoS2 by two processes: electrochemically polarizing MoS2 at negative potentials (vs RHE) in acidic media or immersing MoS2 into certain acid solutions like TFSI. The improvement in catalytic performance is due to the activity enhancement of the active sites in MoS2 by the intercalated protons, which might be related with the effect of the intercalated protons on electrical conductance and the adsorption energy of hydrogen atoms. The enhancement in catalytic activity by the intercalated proton is very stable even in neutral and alkaline electrolytes.


Journal of Chemical Physics | 2013

Dynamical second-order Bethe-Salpeter equation kernel: A method for electronic excitation beyond the adiabatic approximation

Du Zhang; Stephan N. Steinmann; Weitao Yang

We present a dynamical second-order kernel for the Bethe-Salpeter equation to calculate electronic excitation energies. The derivation takes explicitly the functional derivative of the exact second-order self energy with respect to the one-particle Greens function. It includes naturally a frequency dependence, going beyond the adiabatic approximation. Perturbative calculations under the Tamm-Dancoff approximation, using the configuration interaction singles (CIS) eigenvectors, reveal an appreciable improvement over CIS, time-dependent Hartree-Fock, and adiabatic time-dependent density functional theory results. The perturbative results also compare well with equation-of-motion coupled-cluster and experimental results.


Journal of Physical Chemistry Letters | 2016

Conical Intersections from Particle–Particle Random Phase and Tamm–Dancoff Approximations

Yang Yang; Lin Shen; Du Zhang; Weitao Yang

The particle-particle random phase approximation (pp-RPA) and the particle-particle Tamm-Dancoff approximation (pp-TDA) are applied to the challenging conical intersection problem. Because they describe the ground and excited states on the same footing and naturally take into account the interstate interaction, these particle-particle methods, especially the pp-TDA, can correctly predict the dimensionality of the conical intersection seam as well as describe the potential energy surface in the vicinity of conical intersections. Though the bond length of conical intersections is slightly underestimated compared with the complete-active-space self-consistent field (CASSCF) theory, the efficient particle-particle methods are promising for conical intersections and nonadiabatic dynamics.


Nano Letters | 2018

Plasmon-Enhanced Catalysis: Distinguishing Thermal and Nonthermal Effects

Xiao Zhang; Xueqian Li; Matthew E. Reish; Du Zhang; Neil Qiang Su; Yael Gutiérrez; F. Moreno; Weitao Yang; Henry O. Everitt; Jie Liu

In plasmon-enhanced heterogeneous catalysis, illumination accelerates reaction rates by generating hot carriers and hot surfaces in the constituent nanostructured metals. In order to understand how photogenerated carriers enhance the nonthermal reaction rate, the effects of photothermal heating and thermal gradients in the catalyst bed must be confidently and quantitatively characterized. This is a challenging task considering the conflating effects of light absorption, heat transport, and reaction energetics. Here, we introduce a methodology to distinguish the thermal and nonthermal contributions from plasmon-enhanced catalysts, demonstrated by illuminated rhodium nanoparticles on oxide supports to catalyze the CO2 methanation reaction. By simultaneously measuring the total reaction rate and the temperature gradient of the catalyst bed, the effective thermal reaction rate may be extracted. The residual nonthermal rate of the plasmon-enhanced reaction is found to grow with a superlinear dependence on illumination intensity, and its apparent quantum efficiency reaches ∼46% on a Rh/TiO2 catalyst at a surface temperature of 350 °C. Heat and light are shown to work synergistically in these reactions: the higher the temperature, the higher the overall nonthermal efficiency in plasmon-enhanced catalysis.


Journal of Physical Chemistry Letters | 2017

Multireference Density Functional Theory with Generalized Auxiliary Systems for Ground and Excited States

Zehua Chen; Du Zhang; Ye Jin; Yang Yang; Neil Qiang Su; Weitao Yang

To describe static correlation, we develop a new approach to density functional theory (DFT), which uses a generalized auxiliary system that is of a different symmetry, such as particle number or spin, from that of the physical system. The total energy of the physical system consists of two parts: the energy of the auxiliary system, which is determined with a chosen density functional approximation (DFA), and the excitation energy from an approximate linear response theory that restores the symmetry to that of the physical system, thus rigorously leading to a multideterminant description of the physical system. The electron density of the physical system is different from that of the auxiliary system and is uniquely determined from the functional derivative of the total energy with respect to the external potential. Our energy functional is thus an implicit functional of the physical system density, but an explicit functional of the auxiliary system density. We show that the total energy minimum and stationary states, describing the ground and excited states of the physical system, can be obtained by a self-consistent optimization with respect to the explicit variable, the generalized Kohn-Sham noninteracting density matrix. We have developed the generalized optimized effective potential method for the self-consistent optimization. Among options of the auxiliary system and the associated linear response theory, reformulated versions of the particle-particle random phase approximation (pp-RPA) and the spin-flip time-dependent density functional theory (SF-TDDFT) are selected for illustration of principle. Numerical results show that our multireference DFT successfully describes static correlation in bond dissociation and double bond rotation.


Journal of Physical Chemistry Letters | 2018

Single, Double Electronic Excitations and Exciton Effective Conjugation Lengths in π-Conjugated Systems

Christopher Sutton; Yang Yang; Du Zhang; Weitao Yang

The 21Ag and 11Bu excited states of two prototypical π-conjugated compounds, polyacetylene and polydiacetylene, are investigated with the recently developed particle-particle random phase approximation (pp-RPA) method combined with the B3LYP functional. The polymer-limit transition energies are estimated as 1.38 and 1.72 eV for the 21Ag and 11Bu states, respectively, from an extrapolation of the computed excitation energies of model oligomers. These values increase to 1.95 and 2.24 eV for the same transitions when ground-state structures with ∼33% larger bond length alternation are adopted. Applying the pp-RPA to the vertical excitation energies in oligodiacetylene, the polymer-limit transition energies of the 21Ag and 11Bu states are computed to be 2.06 and 2.28 eV, respectively. These results are in good agreement with experimental values or theoretical best estimates, indicating that the pp-RPA method shows great promise for understanding many photophysical phenomena involving both single and double excitations.


Journal of Chemical Physics | 2017

Charge transfer excitations from particle-particle random phase approximation—Opportunities and challenges arising from two-electron deficient systems

Yang Yang; A. Dominguez; Du Zhang; Vitalij Lutsker; Thomas A. Niehaus; Thomas Frauenheim; Weitao Yang

The particle-particle random phase approximation (pp-RPA) is a promising method for studying charge transfer(CT) excitations. Through a detailed analysis on two-electron deficient systems, we show that the pp-RPA is always able to recover the long-distance asymptotic -1/R trend for CT excitations as a result of the concerted effect between orbital energies and the pp-RPA kernel. We also provide quantitative results for systems with relatively short donor-acceptor distances. With conventional hybrid or range-separated functionals, the pp-RPA performs much better than time-dependent density functional theory (TDDFT), although it still gives underestimated results which are not as good as TDDFT with system-dependent tuned functionals. For pp-RPA, there remain three great challenges in dealing with CT excitations. First, the delocalized frontier orbitals in strongly correlated systems often lead to difficulty with self-consistent field convergence as well as an incorrect picture with about half an electron transferred. Second, the commonly used density functionals often underestimate the energy gap between the highest occupied molecular orbital and the lowest unoccupied molecular orbital (LUMO) for the two-electron deficient species, resulting in systems with delocalized orbitals. Third, the performance of pp-RPA greatly depends on the energy difference between the LUMO and a higher virtual orbital. However, the meaning of the orbital energies for higher virtual orbitals is still not clear. We also discuss the performance of an approximate pp-RPA scheme that uses density functional tight binding (pp-DFTB) as reference and demonstrate that the aforementioned challenges can be overcome by adopting suitable range-separated hybrid functionals. The pp-RPA and pp-DFTB are thus promising general approaches for describing charge transfer excitations.


Journal of Physical Chemistry Letters | 2017

Accurate Quasiparticle Spectra from the T-Matrix Self-Energy and the Particle–Particle Random Phase Approximation

Du Zhang; Neil Qiang Su; Weitao Yang

The GW self-energy, especially G0W0 based on the particle-hole random phase approximation (phRPA), is widely used to study quasiparticle (QP) energies. Motivated by the desirable features of the particle-particle (pp) RPA compared to the conventional phRPA, we explore the pp counterpart of GW, that is, the T-matrix self-energy, formulated with the eigenvectors and eigenvalues of the ppRPA matrix. We demonstrate the accuracy of the T-matrix method for molecular QP energies, highlighting the importance of the pp channel for calculating QP spectra.

Collaboration


Dive into the Du Zhang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christopher Sutton

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guoqing Li

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Linyou Cao

North Carolina State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge