Duanbing Chen
University of Electronic Science and Technology of China
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Duanbing Chen.
Physics Reports | 2016
Linyuan Lü; Duanbing Chen; Xiaolong Ren; Qian-Ming Zhang; Yi-Cheng Zhang; Tao Zhou
Real networks exhibit heterogeneous nature with nodes playing far different roles in structure and function. To identify vital nodes is thus very significant, allowing us to control the outbreak of epidemics, to conduct advertisements for e-commercial products, to predict popular scientific publications, and so on. The vital nodes identification attracts increasing attentions from both computer science and physical societies, with algorithms ranging from simply counting the immediate neighbors to complicated machine learning and message passing approaches. In this review, we clarify the concepts and metrics, classify the problems and methods, as well as review the important progresses and describe the state of the art. Furthermore, we provide extensive empirical analyses to compare well-known methods on disparate real networks, and highlight the future directions. In despite of the emphasis on physics-rooted approaches, the unification of the language and comparison with cross-domain methods would trigger interdisciplinary solutions in the near future.
New Journal of Physics | 2011
Linyuan Lü; Duanbing Chen; Tao Zhou
Spreading dynamics of information and diseases are usually analyzed by using a unified framework and analogous models. In this paper, we propose a model to emphasize the essential difference between information spreading and epidemic spreading, where the memory effects, the social reinforcement and the non-redundancy of contacts are taken into account. Under certain conditions, the information spreads faster and broader in regular networks than in random networks, which to some extent supports the recent experimental observation of spreading in online society [D. Centola, Science {\bf 329}, 1194 (2010)]. At the same time, simulation result indicates that the random networks tend to be favorable for effective spreading when the network size increases. This challenges the validity of the above-mentioned experiment for large-scale systems. More significantly, we show that the spreading effectiveness can be sharply enhanced by introducing a little randomness into the regular structure, namely the small-world networks yield the most effective information spreading. Our work provides insights to the understanding of the role of local clustering in information spreading.
Physica A-statistical Mechanics and Its Applications | 2014
Qian Li; Tao Zhou; Linyuan Lü; Duanbing Chen
Identifying influential spreaders is crucial for understanding and controlling spreading processes on social networks. Via assigning degree-dependent weights onto links associated with the ground node, we proposed a variant to a recent ranking algorithm named LeaderRank (Lu et al., 2011). According to the simulations on the standard SIR model, the weighted LeaderRank performs better than LeaderRank in three aspects: (i) the ability to find out more influential spreaders; (ii) the higher tolerance to noisy data; and (iii) the higher robustness to intentional attacks.
PLOS ONE | 2013
Duanbing Chen; Hui Gao; Linyuan Lü; Tao Zhou
Identifying influential nodes in very large-scale directed networks is a big challenge relevant to disparate applications, such as accelerating information propagation, controlling rumors and diseases, designing search engines, and understanding hierarchical organization of social and biological networks. Known methods range from node centralities, such as degree, closeness and betweenness, to diffusion-based processes, like PageRank and LeaderRank. Some of these methods already take into account the influences of a node’s neighbors but do not directly make use of the interactions among it’s neighbors. Local clustering is known to have negative impacts on the information spreading. We further show empirically that it also plays a negative role in generating local connections. Inspired by these facts, we propose a local ranking algorithm named ClusterRank, which takes into account not only the number of neighbors and the neighbors’ influences, but also the clustering coefficient. Subject to the susceptible-infected-recovered (SIR) spreading model with constant infectivity, experimental results on two directed networks, a social network extracted from delicious.com and a large-scale short-message communication network, demonstrate that the ClusterRank outperforms some benchmark algorithms such as PageRank and LeaderRank. Furthermore, ClusterRank can also be applied to undirected networks where the superiority of ClusterRank is significant compared with degree centrality and k-core decomposition. In addition, ClusterRank, only making use of local information, is much more efficient than global methods: It takes only 191 seconds for a network with about nodes, more than 15 times faster than PageRank.
EPL | 2013
Duanbing Chen; Rui Xiao; An Zeng; Yi-Cheng Zhang
Identifying influential spreaders in complex networks is a crucial problem which relates to wide applications. Many methods based on the global information such as K-shell and PageRank have been applied to rank spreaders. However, most of the related previous works overwhelmingly focus on the number of paths for propagation, while whether the paths are diverse enough is usually overlooked. Generally, the spreading ability of a node might not be strong if its propagation depends on one or two paths while the other paths are dead ends. In this letter, we introduced the concept of path diversity and find that it can largely improve the ranking accuracy. We further propose a local method combining the information of path number and path diversity to identify influential nodes in complex networks. This method is shown to outperform many well-known methods in both undirected and directed networks. Moreover, the efficiency of our method makes it possible to apply it to very large systems.
EPL | 2014
Xiangyu Zhao; Bin Huang; Ming Tang; Hai-Feng Zhang; Duanbing Chen
How to identify influential nodes in social networks is of theoretical significance, which relates to how to prevent epidemic spreading or cascading failure, how to accelerate information diffusion, and so on. In this Letter, we make an attempt to find \emph{effective multiple spreaders} in complex networks by generalizing the idea of the coloring problem in graph theory to complex networks. In our method, each node in a network is colored by one kind of color and nodes with the same color are sorted into an independent set. Then, for a given centrality index, the nodes with the highest centrality in an independent set are chosen as multiple spreaders. Comparing this approach with the traditional method, in which nodes with the highest centrality from the \emph{entire} network perspective are chosen, we find that our method is more effective in accelerating the spreading process and maximizing the spreading coverage than the traditional method, no matter in network models or in real social networks. Meanwhile, the low computational complexity of the coloring algorithm guarantees the potential applications of our method.
PLOS ONE | 2014
Hao Liao; An Zeng; Rui Xiao; Zhuo-Ming Ren; Duanbing Chen; Yi-Cheng Zhang
How to design an accurate and robust ranking algorithm is a fundamental problem with wide applications in many real systems. It is especially significant in online rating systems due to the existence of some spammers. In the literature, many well-performed iterative ranking methods have been proposed. These methods can effectively recognize the unreliable users and reduce their weight in judging the quality of objects, and finally lead to a more accurate evaluation of the online products. In this paper, we design an iterative ranking method with high performance in both accuracy and robustness. More specifically, a reputation redistribution process is introduced to enhance the influence of highly reputed users and two penalty factors enable the algorithm resistance to malicious behaviors. Validation of our method is performed in both artificial and real user-object bipartite networks.
Physical Review E | 2012
Giulio Cimini; Duanbing Chen; Matus Medo; Linyuan Lü; Yi-Cheng Zhang; Tao Zhou
The advent of the Internet and World Wide Web has led to unprecedent growth of the information available. People usually face the information overload by following a limited number of sources which best fit their interests. It has thus become important to address issues like who gets followed and how to allow people to discover new and better information sources. In this paper we conduct an empirical analysis of different online social networking sites and draw inspiration from its results to present different source selection strategies in an adaptive model for social recommendation. We show that local search rules which enhance the typical topological features of real social communities give rise to network configurations that are globally optimal. These rules create networks which are effective in information diffusion and resemble structures resulting from real social systems.
Scientific Reports | 2015
Duanbing Chen; Rui Xiao; An Zeng
Due to the wide applications, spreading processes on complex networks have been intensively studied. However, one of the most fundamental problems has not yet been well addressed: predicting the evolution of spreading based on a given snapshot of the propagation on networks. With this problem solved, one can accelerate or slow down the spreading in advance if the predicted propagation result is narrower or wider than expected. In this paper, we propose an iterative algorithm to estimate the infection probability of the spreading process and then apply it to a mean-field approach to predict the spreading coverage. The validation of the method is performed in both artificial and real networks. The results show that our method is accurate in both infection probability estimation and spreading coverage prediction.
PLOS ONE | 2015
Jia-Lin He; Yan Fu; Duanbing Chen
In complex networks, it is of great theoretical and practical significance to identify a set of critical spreaders which help to control the spreading process. Some classic methods are proposed to identify multiple spreaders. However, they sometimes have limitations for the networks with community structure because many chosen spreaders may be clustered in a community. In this paper, we suggest a novel method to identify multiple spreaders from communities in a balanced way. The network is first divided into a great many super nodes and then k spreaders are selected from these super nodes. Experimental results on real and synthetic networks with community structure show that our method outperforms the classic methods for degree centrality, k-core and ClusterRank in most cases.