Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dubravka Škalamera is active.

Publication


Featured researches published by Dubravka Škalamera.


PLOS ONE | 2011

A High-Throughput Platform for Lentiviral Overexpression Screening of the Human ORFeome

Dubravka Škalamera; Max V. Ranall; Benjamin M. Wilson; Paul Leo; Amy S. Purdon; Carolyn Hyde; Ehsan Nourbakhsh; Sean M. Grimmond; Simon C. Barry; Brian Gabrielli; Thomas J. Gonda

In response to the growing need for functional analysis of the human genome, we have developed a platform for high-throughput functional screening of genes overexpressed from lentiviral vectors. Protein-coding human open reading frames (ORFs) from the Mammalian Gene Collection were transferred into lentiviral expression vector using the highly efficient Gateway recombination cloning. Target ORFs were inserted into the vector downstream of a constitutive promoter and upstream of an IRES controlled GFP reporter, so that their transfection, transduction and expression could be monitored by fluorescence. The expression plasmids and viral packaging plasmids were combined and transfected into 293T cells to produce virus, which was then used to transduce the screening cell line. We have optimised the transfection and transduction procedures so that they can be performed using robotic liquid handling systems in arrayed 96-well microplate, one-gene-per-well format, without the need to concentrate the viral supernatant. Since lentiviruses can infect both dividing and non-dividing cells, this system can be used to overexpress human ORFs in a broad spectrum of experimental contexts. We tested the platform in a 1990 gene pilot screen for genes that can increase proliferation of the non-tumorigenic mammary epithelial cell line MCF-10A after removal of growth factors. Transduced cells were labelled with the nucleoside analogue 5-ethynyl-2′-deoxyuridine (EdU) to detect cells progressing through S phase. Hits were identified using high-content imaging and statistical analysis and confirmed with vectors using two different promoters (CMV and EF1α). The screen demonstrates the reliability, versatility and utility of our screening platform, and identifies novel cell cycle/proliferative activities for a number of genes.


Molecular & Cellular Proteomics | 2014

Rapid Mapping of Interactions between Human SNX-BAR Proteins Measured In Vitro by AlphaScreen and Single-molecule Spectroscopy

Emma Sierecki; Loes M. Stevers; Nichole Giles; Mark E. Polinkovsky; Mehdi Moustaqil; Sergey Mureev; Wayne A. Johnston; Mareike Dahmer-Heath; Dubravka Škalamera; Thomas J. Gonda; Brian Gabrielli; Brett M. Collins; Kirill Alexandrov; Yann Gambin

Protein dimerization and oligomerization is commonly used by nature to increase the structural and functional complexity of proteins. Regulated protein assembly is essential to transfer information in signaling, transcriptional, and membrane trafficking events. Here we show that a combination of cell-free protein expression, a proximity based interaction assay (AlphaScreen), and single-molecule fluorescence allow rapid mapping of homo- and hetero-oligomerization of proteins. We have applied this approach to the family of BAR domain-containing sorting nexin (SNX-BAR) proteins, which are essential regulators of membrane trafficking and remodeling in all eukaryotes. Dimerization of BAR domains is essential for creating a concave structure capable of sensing and inducing membrane curvature. We have systematically mapped 144 pairwise interactions between the human SNX-BAR proteins and generated an interaction matrix of preferred dimerization partners for each family member. We find that while nine SNX-BAR proteins are able to form homo-dimers, several including the retromer-associated SNX1, SNX2, and SNX5 require heteromeric interactions for dimerization. SNX2, SNX4, SNX6, and SNX8 show a promiscuous ability to bind other SNX-BAR proteins and we also observe a novel interaction with the SNX3 protein which lacks the BAR domain structure.


Journal of Biotechnology | 2015

Gateway-compatible vectors for high-throughput protein expression in pro- and eukaryotic cell-free systems

Dejan Gagoski; Sergey Mureev; Nichole Giles; Wayne A. Johnston; Mareike Dahmer-Heath; Dubravka Škalamera; Thomas J. Gonda; Kirill Alexandrov

Although numerous techniques for protein expression and production are available the pace of genome sequencing outstrips our ability to analyze the encoded proteins. To address this bottleneck, we have established a system for parallelized cloning, DNA production and cell-free expression of large numbers of proteins. This system is based on a suite of pCellFree Gateway destination vectors that utilize a Species Independent Translation Initiation Sequence (SITS) that mediates recombinant protein expression in any in vitro translation system. These vectors introduce C or N terminal EGFP and mCherry fluorescent and affinity tags, enabling direct analysis and purification of the expressed proteins. To maximize throughput and minimize the cost of protein production we combined Gateway cloning with Rolling Circle DNA Amplification. We demonstrate that as little as 0.1 ng of plasmid DNA is sufficient for template amplification and production of recombinant human protein in Leishmania tarentolae and Escherichia coli cell-free expression systems. Our experiments indicate that this approach can be applied to large gene libraries as it can be reliably performed in multi-well plates. The resulting protein expression pipeline provides a valuable new tool for applications of the post genomic era.


PLOS ONE | 2012

Generation of a Genome Scale Lentiviral Vector Library for EF1α Promoter-Driven Expression of Human ORFs and Identification of Human Genes Affecting Viral Titer

Dubravka Škalamera; Mareike Dahmer; Amy S. Purdon; Benjamin M. Wilson; Max V. Ranall; Antje Blumenthal; Brian Gabrielli; Thomas J. Gonda

The bottleneck in elucidating gene function through high-throughput gain-of-function genome screening is the limited availability of comprehensive libraries for gene overexpression. Lentiviral vectors are the most versatile and widely used vehicles for gene expression in mammalian cells. Lentiviral supernatant libraries for genome screening are commonly generated in the HEK293T cell line, yet very little is known about the effect of introduced sequences on the produced viral titer, which we have shown to be gene dependent. We have generated an arrayed lentiviral vector library for the expression of 17,030 human proteins by using the GATEWAY® cloning system to transfer ORFs from the Mammalian Gene Collection into an EF1alpha promoter-dependent lentiviral expression vector. This promoter was chosen instead of the more potent and widely used CMV promoter, because it is less prone to silencing and provides more stable long term expression. The arrayed lentiviral clones were used to generate viral supernatant by packaging in the HEK293T cell line. The efficiency of transfection and virus production was estimated by measuring the fluorescence of IRES driven GFP, co-expressed with the ORFs. More than 90% of cloned ORFs produced sufficient virus for downstream screening applications. We identified genes which consistently produced very high or very low viral titer. Supernatants from select clones that were either high or low virus producers were tested on a range of cell lines. Some of the low virus producers, including two previously uncharacterized proteins were cytotoxic to HEK293T cells. The library we have constructed presents a powerful resource for high-throughput gain-of-function screening of the human genome and drug-target discovery. Identification of human genes that affect lentivirus production may lead to improved technology for gene expression using lentiviral vectors.


Molecular Cancer Therapeutics | 2015

Aurora A Is Critical for Survival in HPV-Transformed Cervical Cancer

Brian Gabrielli; Fawzi Bokhari; Max V. Ranall; Zay Yar Oo; Alexander J. Stevenson; Weili Wang; Melanie Murrell; Mushfiq H. Shaikh; Sora Fallaha; Daniel Clarke; Madison Kelly; Karin A Sedelies; Melinda E. Christensen; Sara J. McKee; Graham R. Leggatt; Paul Leo; Dubravka Škalamera; H. Peter Soyer; Thomas J. Gonda; Nigel A.J. McMillan

Human papillomavirus (HPV) is the causative agent in cervical cancer. HPV oncogenes are major drivers of the transformed phenotype, and the cancers remain addicted to these oncogenes. A screen of the human kinome has identified inhibition of Aurora kinase A (AURKA) as being synthetically lethal on the background of HPV E7 expression. The investigational AURKA inhibitor MLN8237/Alisertib selectively promoted apoptosis in the HPV cancers. The apoptosis was driven by an extended mitotic delay in the Alisertib-treated HPV E7–expressing cells. This had the effect of reducing Mcl-1 levels, which is destabilized in mitosis, and increasing BIM levels, normally destabilized by Aurora A in mitosis. Overexpression of Mcl-1 reduced sensitivity to the drug. The level of HPV E7 expression influenced the extent of Alisertib-induced mitotic delay and Mcl-1 reduction. Xenograft experiments with three cervical cancer cell lines showed Alisertib inhibited growth of HPV and non-HPV xenografts during treatment. Growth of non-HPV tumors was delayed, but in two separate HPV cancer cell lines, regression with no resumption of growth was detected, even at 50 days after treatment. A transgenic model of premalignant disease driven solely by HPV E7 also demonstrated sensitivity to drug treatment. Here, we show for the first time that targeting of the Aurora A kinase in mice using drugs such as Alisertib results in a curative sterilizing therapy that may be useful in treating HPV-driven cancers. Mol Cancer Ther; 14(12); 2753–61. ©2015 AACR.


Experimental Dermatology | 2014

DCT protects human melanocytic cells from UVR and ROS damage and increases cell viability.

Stephen A. Ainger; Xuan L. Yong; Shu Shyan Wong; Dubravka Škalamera; Brian Gabrielli; J. Helen Leonard; Richard A. Sturm

Dopachrome tautomerase (DCT) is involved in the formation of the photoprotective skin pigment eumelanin and has also been shown to have a role in response to apoptotic stimuli and oxidative stress. The effect of DCT on UVR DNA damage responses and survival pathways in human melanocytic cells was examined by knockdown experiments using melanoma cells, neonatal foreskin melanoblasts (MB) in monoculture and in co‐culture with human keratinocytes. MB cell strains genotyped as either MC1R WT or MC1R RHC homozygotes, which are known to be deficient in DCT, were transduced with lentivirus vectors for either DCT knockdown or overexpression. We found melanoma cell survival was reduced by DCT depletion and by UVR over time. UVR‐induced p53 and pp53‐Ser15 levels were reduced with DCT depletion. Knockdown of DCT in MC1R WT and MC1R RHC MB cells reduced their survival after UVR exposure, whereas increased DCT protein levels enhanced survival. DCT depletion reduced p53 and pp53‐Ser15 levels in WM266‐4 melanoma and MC1R WT MB cells, while MC1R RHC MB cells displayed variable levels. Both MC1R WT and RHC genotypes of MB cells were responsive to UVR at 3 h with increases in both p53 and pp53‐Ser15 proteins. MC1R WT MB cell strains in coculture with keratinocytes have an increased cell survival after UVR exposure when compared to those in monoculture, a protective effect which appears to be conferred by the keratinocytes.


Clinical & Experimental Metastasis | 2016

Repositioning “old” drugs for new causes: identifying new inhibitors of prostate cancer cell migration and invasion

Esha T. Shah; Akanksha Upadhyaya; Lisa K. Philp; Tiffany Tang; Dubravka Škalamera; Jennifer H. Gunter; Colleen C. Nelson; Elizabeth D. Williams; Brett G. Hollier

The majority of prostate cancer (PCa) deaths occur due to the metastatic spread of tumor cells to distant organs. Currently, there is a lack of effective therapies once tumor cells have spread outside the prostate. It is therefore imperative to rapidly develop therapeutics to inhibit the metastatic spread of tumor cells. Gain of cell motility and invasive properties is the first step of metastasis and by inhibiting motility one can potentially inhibit metastasis. Using the drug repositioning strategy, we developed a cell-based multi-parameter primary screening assay to identify drugs that inhibit the migratory and invasive properties of metastatic PC-3 PCa cells. Following the completion of the primary screening assay, 33 drugs were identified from an FDA approved drug library that either inhibited migration or were cytotoxic to the PC-3 cells. Based on the data obtained from the subsequent validation studies, mitoxantrone hydrochloride, simvastatin, fluvastatin and vandetanib were identified as strong candidates that can inhibit both the migration and invasion of PC-3 cells without significantly affecting cell viability. By employing the drug repositioning strategy instead of a de novo drug discovery and development strategy, the identified drug candidates have the potential to be rapidly translated into the clinic for the management of men with aggressive forms of PCa.


Pigment Cell & Melanoma Research | 2016

A novel ATM-dependent checkpoint defect distinct from loss of function mutation promotes genomic instability in melanoma

Loredana Spoerri; Kelly Brooks; KeeMing Chia; Gavriel Grossman; Jonathan J. Ellis; Mareike Dahmer-Heath; Dubravka Škalamera; Sandra Pavey; Bryan Burmeister; Brian Gabrielli

Melanomas have high levels of genomic instability that can contribute to poor disease prognosis. Here, we report a novel defect of the ATM‐dependent cell cycle checkpoint in melanoma cell lines that promotes genomic instability. In defective cells, ATM signalling to CHK2 is intact, but the cells are unable to maintain the cell cycle arrest due to elevated PLK1 driving recovery from the arrest. Reducing PLK1 activity recovered the ATM‐dependent checkpoint arrest, and over‐expressing PLK1 was sufficient to overcome the checkpoint arrest and increase genomic instability. Loss of the ATM‐dependent checkpoint did not affect sensitivity to ionizing radiation demonstrating that this defect is distinct from ATM loss of function mutations. The checkpoint defective melanoma cell lines over‐express PLK1, and a significant proportion of melanomas have high levels of PLK1 over‐expression suggesting this defect is a common feature of melanomas. The inability of ATM to impose a cell cycle arrest in response to DNA damage increases genomic instability. This work also suggests that the ATM‐dependent checkpoint arrest is likely to be defective in a higher proportion of cancers than previously expected.


Journal of Biomolecular Screening | 2017

Genome-Wide Overexpression Screen Identifies Genes Able to Bypass p16-Mediated Senescence in Melanoma

W. J. Lee; Dubravka Škalamera; Mareike Dahmer-Heath; Konstanin Shakhbazov; Max V. Ranall; Carly Fox; Duncan Lambie; Alexander J. Stevenson; Paul Yaswen; Thomas J. Gonda; Brian Gabrielli

Malignant melanomas often arise from nevi, which result from initial oncogene-induced hyperproliferation of melanocytes that are maintained in a CDKN2A/p16-mediated senescent state. Thus, genes that can bypass this senescence barrier are likely to contribute to melanoma development. We have performed a gain-of-function screen of 17,030 lentivirally expressed human open reading frames (ORFs) in a melanoma cell line containing an inducible p16 construct to identify such genes. Genes known to bypass p16-induced senescence arrest, including the human papilloma virus 18 E7 gene (HPV18E7), and genes such as the p16-binding CDK6 with expected functions, as well as panel of novel genes, were identified, including high-mobility group box (HMGB) proteins. A number of these were further validated in two other models of p16-induced senescence. Tissue immunohistochemistry demonstrated higher levels of CDK6 in primary melanomas compared with normal skin and nevi. Reduction of CDK6 levels drove melanoma cells expressing functional p16 into senescence, demonstrating its contribution to bypass senescence.


Scientific Reports | 2018

Mechanism of action of the third generation benzopyrans and evaluation of their broad anti-cancer activity in vitro and in vivo

Alexander J. Stevenson; Eleanor I. Ager; Martina Proctor; Dubravka Škalamera; Andrew Heaton; David A. Brown; Brian Gabrielli

Successive rounds of chemical modification in three generations of benzopyran molecules have shown to select for different mechanisms of actions and progressive increases in anti-cancer activity. In this study, we investigated the mechanism of action of the third-generation benzopyran compounds, TRX-E-002-1 and TRX-E-009-1. High-content screening of a panel of 240 cancer cell lines treated with TRX-E-009-1 demonstrated it has broad anti-cancer potential. Within this screen, melanoma cell lines showed a range of sensitivities and subsequently a second independent panel of 21 melanoma 3D spheroid lines were assessed for their responses to both TRX-E-002-1 and TRX-E-009-1 compounds. Time-lapse microscopy illustrated both of these compounds caused mitotic delays in treated cells, resulting in either mitotic slippage or apoptosis. This finding along with immunostaining, in vitro polymerization assays, and animal experiments in both athymic and immunocompetent mice, demonstrates that these third-generation benzopyran compounds are potent tubulin polymerization inhibitors in vitro and in vivo, and this is the molecular basis of their anti-cancer activity in melanoma. These findings indicate these BP compounds may offer a novel anti-microtubule strategy for cancer intervention and provides the basis for further investigation into biomarkers of clinical sensitivity.

Collaboration


Dive into the Dubravka Škalamera's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Max V. Ranall

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mareike Dahmer-Heath

Translational Research Institute

View shared research outputs
Top Co-Authors

Avatar

Amy S. Purdon

Princess Alexandra Hospital

View shared research outputs
Top Co-Authors

Avatar

Benjamin M. Wilson

Princess Alexandra Hospital

View shared research outputs
Top Co-Authors

Avatar

W. J. Lee

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Brett G. Hollier

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Elizabeth D. Williams

Queensland University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge