Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Duc Ninh Nguyen is active.

Publication


Featured researches published by Duc Ninh Nguyen.


The International Journal of Biochemistry & Cell Biology | 2013

Anti-inflammatory mechanisms of bioactive milk proteins in the intestine of newborns

Dereck E. W. Chatterton; Duc Ninh Nguyen; Stine Brandt Bering; Per Torp Sangild

The human newborn infant is susceptible to gut inflammatory disorders. In particular, growth-restricted infants or infants born prematurely may develop a severe form of intestinal inflammation known as necrotizing enterocolitis (NEC), which has a high mortality. Milk provides a multitude of proteins with anti-inflammatory properties and in this review we gather together some recent significant advances regarding the isolation and proteomic identification of these minor constituents of both human and bovine milk. We introduce the process of inflammation, with a focus on the immature gut, and describe how a multitude of milk proteins act against the inflammatory process according to both in vitro and in vivo studies. We highlight the effects of milk proteins such as caseins, and of whey proteins such as alpha-lactalbumin, beta-lactoglobulin, lactoferrin, osteopontin, immunoglobulins, trefoil factors, lactoperoxidase, superoxide dismutase, platelet-activating factor acetylhydrolase, alkaline phosphatase, and growth factors (TGF-β, IGF-I and IGF-II, EGF, HB-EGF). The effects of milk fat globule proteins, such as TLR-2, TLR-4, sCD14 and MFG-E8/lactadherin, are also discussed. Finally, we indicate how milk proteins could be useful for the prophylaxis and therapy of intestinal inflammation in infants and children.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2014

Transforming growth factor-β2 and endotoxin interact to regulate homeostasis via interleukin-8 levels in the immature intestine

Duc Ninh Nguyen; Per T. Sangild; Mette Viberg Østergaard; Stine B. Bering; Dereck E. W. Chatterton

A balance between pro- and anti-inflammatory signals from milk and microbiota controls intestinal homeostasis just after birth, and an optimal balance is particularly important for preterm neonates that are sensitive to necrotizing enterocolitis (NEC). We suggest that the intestinal cytokine IL-8 plays an important role and hypothesize that transforming growth factor-β2 (TGF-β2) acts in synergy with bacterial lipopolysaccharide (LPS) to control IL-8 levels, thereby supporting intestinal homeostasis. Preterm pigs were fed colostrum (containing TGF-β2) or infant formula (IF) with or without antibiotics (COLOS, n = 27; ANTI, n = 11; IF, n = 40). Intestinal IL-8 levels and NEC incidence were much higher in IF than in COLOS and ANTI pigs (P < 0.001), but IL-8 levels did not correlate with NEC severity. Intestinal TGF-β2 levels were high in COLOS but low in IF and ANTI pigs. Based on these observations, the interplay among IL-8, TGF-β2, and LPS was investigated in a porcine intestinal epithelial cell line. TGF-β2 attenuated LPS-induced IL-6, IL-1β, and TNF-α release by reducing early ERK activation, whereas IL-8 secretion was synergistically induced by LPS and TGF-β2 via NF-κB. The TGF-β2/LPS-induced IL-8 levels stimulated cell proliferation and migration following epithelial injury, without continuous NF-κB activation and cyclooxygenase-2 expression. We suggest that a combined TGF-β2-LPS induction of IL-8 stimulates epithelial repair just after birth when the intestine is first exposed to colonizing bacteria and TGF-β2-containing milk. Moderate IL-8 levels may act to control intestinal inflammation, whereas excessive IL-8 production may enhance the damaging proinflammatory cascade leading to NEC.


Journal of Proteomics | 2016

Bovine lactoferrin regulates cell survival, apoptosis and inflammation in intestinal epithelial cells and preterm pig intestine

Duc Ninh Nguyen; Pingping Jiang; Allan Stensballe; Emøke Bendixen; Per T. Sangild; Dereck E. W. Chatterton

UNLABELLED Bovine lactoferrin (bLF) may modulate neonatal intestinal inflammation. Previous studies in intestinal epithelial cells (IECs) indicated that moderate bLF doses enhance proliferation whereas high doses trigger inflammation. To further elucidate cellular mechanisms, we profiled the porcine IEC proteome after stimulation with bLF at 0, 0.1, 1 and 10g/L by LC-MS-based proteomics. Key pathways were analyzed in the intestine of formula-fed preterm pigs with and without supplementation of 10g/L bLF. Levels of 123 IEC proteins were altered by bLF. Low bLF doses (0.1-1g/L) up-regulated 11 proteins associated with glycolysis, energy metabolism and protein synthesis, indicating support of cell survival. In contrast, a high bLF dose (10g/L) up-regulated three apoptosis-inducing proteins, down-regulated five anti-apoptotic and proliferation-inducing proteins and 15 proteins related to energy and amino acid metabolism, and altered three proteins enhancing the hypoxia inducible factor-1 (HIF-1) pathway. In the preterm pig intestine, bLF at 10g/L decreased villus height/crypt depth ratio and up-regulated the Bax/Bcl-2 ratio and HIF-1α, indicating elevated intestinal apoptosis and inflammation. In conclusion, bLF dose-dependently affects IECs via metabolic, apoptotic and inflammatory pathways. It is important to select an appropriate dose when feeding neonates with bLF to avoid detrimental effects exerted by excessive doses. BIOLOGICAL SIGNIFICANCE The present work elucidates dose-dependent effects of bLF on the proteomic changes of IECs in vitro supplemented with data from a preterm pig study confirming detrimental effects of enteral feeding with the highest dose of bLF (10g/L). The study contributes to further understanding on mechanisms that bLF, as an important milk protein, can regulate the homeostasis of the immature intestine. Results from this study urge neonatologists to carefully consider the dose of bLF to supplement into infant formula used for preterm neonates.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2016

Enteral but not parenteral antibiotics enhance gut function and prevent necrotizing enterocolitis in formula-fed newborn preterm pigs

Malene M. Birck; Duc Ninh Nguyen; Malene Skovsted Cilieborg; Shamrulazhar Shamzir Kamal; Dennis S. Nielsen; Peter Damborg; John Elmerdahl Olsen; Charlotte Lauridsen; Per T. Sangild; Thomas Thymann

Preterm infants are susceptible to infection and necrotizing enterocolitis (NEC) and are often treated with antibiotics. Simultaneous administration of enteral and parenteral antibiotics during the first days after preterm birth prevents formula-induced NEC lesions in pigs, but it is unknown which administration route is most effective. We hypothesized that only enteral antibiotics suppress gut bacterial colonization and NEC progression in formula-fed preterm pigs. Caesarean-delivered preterm pigs (90-92% of gestation) were fed increasing amounts of infant formula from birth to day 5 and given saline (CON) or antibiotics (ampicillin, gentamicin, and metronidazole) via the enteral (ENT) or parenteral (PAR) route (n = 16-17). NEC lesions, intestinal morphology, function, microbiology, and inflammatory mediators were evaluated. NEC lesions were completely prevented in ENT pigs, whereas there were high incidences of mild NEC lesions (59-63%) in CON and PAR pigs (P < 0.001). ENT pigs had elevated intestinal weight, villus height/crypt depth ratio, and goblet cell density and reduced gut permeability, mucosal adherence of bacteria, IL-8 levels, colonic lactic acid levels, and density of Gram-positive bacteria, relative to CON pigs (P < 0.05). Values in PAR pigs were intermediate with few affected parameters (reduced lactic acid levels and density and adherence of Gram-positive bacteria, relative to CON pigs, P < 0.05). There was no evidence of increased antimicrobial resistance following the treatments. We conclude that enteral, but not parenteral, administration of antibiotics reduces gut bacterial colonization, inflammation, and NEC lesions in newborn, formula-fed preterm pigs. Delayed colonization may support intestinal structure, function, and immunity in the immediate postnatal period of formula-fed preterm neonates.


Journal of Nutrition | 2017

Pasteurization Procedures for Donor Human Milk Affect Body Growth, Intestinal Structure, and Resistance against Bacterial Infections in Preterm Pigs

Yanqi Li; Duc Ninh Nguyen; Marita de Waard; Lars Porskjær Christensen; Ping Zhou; Pingping Jiang; Jing Sun; Anders Miki Bojesen; Charlotte Lauridsen; Jens Lykkesfeldt; Trine Kastrup Dalsgaard; Stine B. Bering; Per T. Sangild

Background: Holder pasteurization (HP) destroys multiple bioactive factors in donor human milk (DM), and UV-C irradiation (UVC) is potentially a gentler method for pasteurizing DM for preterm infants.Objective: We investigated whether UVC-treated DM improves gut maturation and resistance toward bacterial infections relative to HP-treated DM.Methods: Bacteria, selected bioactive components, and markers of antioxidant capacity were measured in unpasteurized donor milk (UP), HP-treated milk, and UVC-treated milk (all from the same DM pool). Fifty-seven cesarean-delivered preterm pigs (91% gestation; ratio of males to females, 30:27) received decreasing volumes of parental nutrition (average 69 mL · kg-1 · d-1) and increasing volumes of the 3 DM diets (n = 19 each, average 89 mL · kg-1 · d-1) for 8-9 d. Body growth, gut structure and function, and systemic bacterial infection were evaluated.Results: A high bacterial load in the UP (6×105 colony forming units/mL) was eliminated similarly by HP and UVC treatments. Relative to HP-treated milk, both UVC-treated milk and UP showed greater activities of lipase and alkaline phosphatase and concentrations of lactoferrin, secretory immunoglobulin A, xanthine dehydrogenase, and some antioxidant markers (all P < 0.05). The pigs fed UVC-treated milk and pigs fed UP showed higher relative weight gain than pigs fed HP-treated milk (5.4% and 3.5%), and fewer pigs fed UVC-treated milk had positive bacterial cultures in the bone marrow (28%) than pigs fed HP-treated milk (68%) (P < 0.05). Intestinal health was also improved in pigs fed UVC-treated milk compared with those fed HP-treated milk as indicated by a higher plasma citrulline concentration (36%) and villus height (38%) (P < 0.05) and a tendency for higher aminopeptidase N (48%) and claudin-4 (26%) concentrations in the distal intestine (P < 0.08). The gut microbiota composition was similar among groups except for greater proportions of Enterococcus in pigs fed UVC-treated milk than in pigs fed UP and those fed HP-treated milk in both cecum contents (20% and 10%) and distal intestinal mucosa (24% and 20%) (all P < 0.05).Conclusions: UVC is better than HP treatment in preserving bioactive factors in DM. UVC-treated milk may induce better weight gain, intestinal health, and resistance against bacterial infections as shown in preterm pigs as a model for DM-fed preterm infants.


Scientific Reports | 2016

Delayed development of systemic immunity in preterm pigs as a model for preterm infants

Duc Ninh Nguyen; Pingping Jiang; Hanne Frøkiær; Peter M. H. Heegaard; Thomas Thymann; Per T. Sangild

Preterm neonates are highly sensitive to systemic infections in early life but little is known about systemic immune development following preterm birth. We hypothesized that preterm neonates have immature systemic immunity with distinct developmental trajectory for the first several weeks of life, relative to those born at near-term or term. Using pigs as a model, we characterized blood leukocyte subsets, antimicrobial activities and TLR-mediated cytokine production during the first weeks after preterm birth. Relative to near-term and term pigs, newborn preterm pigs had low blood leukocyte counts, poor neutrophil phagocytic rate, and limited cytokine responses to TLR1/2/5/7/9 and NOD1/2 agonists. The preterm systemic responses remained immature during the first postnatal week, but thereafter showed increased blood leukocyte numbers, NK cell proportion, neutrophil phagocytic rate and TLR2-mediated IL-6 and TNF-α production. These immune parameters remained different between preterm and near-term pigs at 2–3 weeks, even when adjusted for post-conceptional age. Our data suggest that systemic immunity follows a distinct developmental trajectory following preterm birth that may be influenced by postnatal age, complications of prematurity and environmental factors. Consequently, the immediate postnatal period may represent a window of opportunity to improve innate immunity in preterm neonates by medical, antimicrobial or dietary interventions.


Journal of Nutritional Biochemistry | 2017

Human milk oligosaccharide effects on intestinal function and inflammation after preterm birth in pigs

Stine Ostenfeldt Rasmussen; Lena Martin; Mette Viberg Østergaard; Silvia Rudloff; Michael Roggenbuck; Duc Ninh Nguyen; Per T. Sangild; Stine B. Bering

Human milk oligosaccharides (HMOs) may mediate prebiotic and anti-inflammatory effects in newborns. This is particularly important for preterm infants who are highly susceptible to intestinal dysfunction and necrotizing enterocolitis (NEC). We hypothesized that HMO supplementation of infant formula (IF) improves intestinal function, bacterial colonization and NEC resistance immediately after preterm birth, as tested in a preterm pig model. Mixtures of HMOs were investigated in intestinal epithelial cells and in preterm pigs (n=112) fed IF supplemented without (CON) or with a mixture of four HMOs (4-HMO) or >25 HMOs (25-HMO, 5-10 g/L given for 5 or 11 days). The 25-HMO blend decreased cell proliferation and both HMO blends decreased lipopolysaccharide-induced interleukin-8 secretion in IPEC-J2 cells, relative to control (P<.05). All HMOs were found in urine and feces of HMO-treated pigs, and short-chain fatty acids in the colon were higher in HMO vs. CON pigs (P<.05). After 5 days, NEC lesions were similar between HMO and CON pigs and 25-HMO increased colon weights (P<.01). After 11 days, the 4-HMO diet did not affect NEC (56 vs. 79%, P=.2) but increased dehydration and diarrhea (P<.05) and expression of immune-related genes (IL10, IL12, TGFβ, TLR4; P<.05). Bacterial adherence and diversity was unchanged after HMO supplementation. CONCLUSION Complex HMO-blends affect intestinal epithelial cells in vitro and gut gene expression and fermentation in preterm pigs. However, the HMOs had limited effects on NEC and diarrhea when supplemented to IF. Longer-term exposure to HMOs may be required to improve the immature intestinal function in formula-fed preterm neonates.


Innate Immunity | 2016

Oral antibiotics increase blood neutrophil maturation and reduce bacteremia and necrotizing enterocolitis in the immediate postnatal period of preterm pigs

Duc Ninh Nguyen; Eva Fuglsang; Pingping Jiang; Malene M. Birck; Xiaoyu Pan; Shamrulazhar Bs Kamal; Susanne Elisabeth Pors; Pernille L Gammelgaard; Dennis S. Nielsen; Thomas Thymann; Ofer Levy; Hanne Frøkiær; Per T. Sangild

Immature immunity may predispose preterm neonates to infections and necrotizing enterocolitis (NEC). Intravenous antibiotics are frequently given to prevent and treat sepsis, while oral antibiotics are seldom used. We hypothesized that oral antibiotics promote maturation of systemic immunity and delay gut bacterial colonization and thereby protect preterm neonates against both NEC and bacteremia in the immediate postnatal period. Preterm pigs were given formula and administered saline (CON) or broad-spectrum antibiotics orally (ORA) or systemically (SYS) for 5 d after birth. Temporal changes in blood parameters and bacterial composition in the intestine, blood and immune organs were analyzed. Newborn preterm pigs had few blood neutrophils and a high frequency of progenitor cells. Neutrophils gradually matured after preterm birth with increasing CD14 and decreasing CD172a expressions. Preterm neutrophil and monocyte TLR2 expression and TLR2-mediated blood cytokine responses were low relative to adults. ORA pigs showed enhanced blood neutrophil maturation with reduced cell size and CD172a expression. Only ORA pigs, but not SYS pigs, were protected from a high density of gut Gram-positive bacteria, high gut permeability, Gram-positive bacteremia and NEC. Neonatal oral antibiotics may benefit mucosal and systemic immunity via delayed gut colonization and enhanced blood neutrophil maturation just after preterm birth.


Journal of Pediatric Gastroenterology and Nutrition | 2018

Bioactive Whey Protein Concentrate and Lactose Stimulate Gut Function in Formula-fed Preterm Pigs

Yanqi Li; Duc Ninh Nguyen; Karina Obelitz-Ryom; Anders D. Andersen; Thomas Thymann; Dereck E. W. Chatterton; Stig Purup; Anne Heckmann; Stine B. Bering; Per T. Sangild

Objective: Formula feeding is associated with compromised intestinal health in preterm neonates compared with maternal milk, but the mechanisms behind this are unclear. We hypothesized that the use of maltodextrin and whey protein concentrates (WPCs) with reduced bioactivity owing to thermal processing are important factors. Method: Ninety-two cesarean-delivered preterm pigs were fed increasing doses of formulas for 5 days (24–120 mL · kg−1 · day−1). In experiment 1, 4 groups of pigs (n = 15–16) were fed lactose- or maltodextrin-dominant formulas (lactose/maltodextrin ratios 3:1 or 1:3, respectively), containing WPC with either high or low levels of IgG (WPC1 or WPC2, respectively). In experiment 2, 2 groups of pigs (n = 15–16) were fed lactose-dominant formulas with either a bioactive WPC (BioWPC, produced by reduced thermal-processing) or a conventional WPC (ConWPC). Results: In experiment 1, pigs fed formula with WPC1 had higher villi, hexose absorption, and lactase activity in small intestine, relative to WPC2, but predominantly with the lactose-dominant formula (all P < 0.05). In experiment 2, the BioWPC product had higher bioactivity, as indicated by higher IgG, lactoferrin, and TGF-&bgr;2 levels, and better enterocyte proliferation in vitro. Pigs fed the BioWPC formula showed better feeding tolerance and higher intestinal villi and lactase activity (all P < 0.05). The BioWPC formula-fed pigs also had greater physical activity (P < 0.05 on day 4) and tended to show improved hexose absorption and decreased gut permeability (both P ⩽ 0.09). Conclusions: Infant formulas containing lactose as the main carbohydrate, and WPC with reduced thermal processing, may support gut maturation and health in sensitive, preterm neonates.


Journal of Dairy Science | 2016

Processing of whey modulates proliferative and immune functions in intestinal epithelial cells

Duc Ninh Nguyen; Per T. Sangild; Yanqi Li; Stine B. Bering; Dereck E. W. Chatterton

Whey protein concentrate (WPC) is often subjected to heat treatment during industrial processing, resulting in protein denaturation and loss of protein bioactivity. We hypothesized that WPC samples subjected to different degrees of thermal processing are associated with different levels of bioactive proteins and effects on proliferation and immune response in intestinal epithelial cells (IEC). The results showed that low-heat-treated WPC had elevated levels of lactoferrin and transforming growth factor-β2 compared with that of standard WPC. The level of aggregates depended on the source of whey, with the lowest level being found in WPC derived from acid whey. Following acid activation, WPC from acid whey enhanced IEC proliferation compared with WPC from sweet whey or nonactivated WPC. Low-heat-treated WPC from acid whey induced greater secretion of IL-8 in IEC than either standard WPC from acid whey or low-heat-treated WPC from sweet whey. Following acid activation (to activate growth factors), low-heat-treated WPC from sweet whey induced higher IL-8 levels in IEC compared with standard WPC from sweet whey. In conclusion, higher levels of bioactive proteins in low-heat-treated WPC, especially from acid whey, may enhance proliferation and cytokine responses of IEC. These considerations could be important to maintain optimal bioactivity of infant formulas, including their maturational and immunological effects on the developing intestine.

Collaboration


Dive into the Duc Ninh Nguyen's collaboration.

Top Co-Authors

Avatar

Per T. Sangild

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas Thymann

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Pingping Jiang

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Yanqi Li

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Jing Sun

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anders Brunse

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge