Duff Neill
Massachusetts Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Duff Neill.
Physical Review Letters | 2012
Jui-yu Chiu; Ambar Jain; Duff Neill; Ira Z. Rothstein
We introduce a systematic approach for the resummation of perturbative series which involves large logarithms not only due to large invariant mass ratios but large rapidities as well. A series of this form can appear in a variety of gauge theory observables. The formalism is utilized to calculate the jet broadening event shape in a systematic fashion to next-to-leading logarithmic order. An operator definition of the factorized cross section as well as a closed form of the next-to-leading-log cross section are presented. The result agrees with the data to within errors.
Journal of High Energy Physics | 2014
Andrew J. Larkoski; Duff Neill; Jesse Thaler
A bstractBroadening is a classic jet observable that probes the transverse momentum structure of jets. Traditionally, broadening has been measured with respect to the thrust axis, which is aligned along the (hemisphere) jet momentum to minimize the vector sum of transverse momentum within a jet. In this paper, we advocate measuring broadening with respect to the “broadening axis”, which is the direction that minimizes the scalar sum of transverse momentum within a jet. This approach eliminates many of the calculational complexities arising from recoil of the leading parton, and observables like the jet angularities become recoil-free when measured using the broadening axis. We derive a simple factorization theorem for broadening-axis observables which smoothly interpolates between the thrust-like and broadening-like regimes. We argue that the same factorization theorem holds for two-point energy correlation functions as well as for jet shapes based on a “winner-take-all axis”. Using kinked broadening axes, we calculate event-wide angularities in e+e− collisions with next-to-leading logarithmic resummation. Defining jet regions using the broadening axis, we also calculate the global logarithms for angularities within a single jet. We find good agreement comparing our calculations both to showering Monte Carlo programs and to automated resummation tools. We give a brief historical perspective on the broadening axis and suggest ways that broadening-axis observables could be used in future jet substructure studies at the Large Hadron Collider.
Journal of High Energy Physics | 2014
Andrew J. Larkoski; Ian Moult; Duff Neill
A bstractOptimized jet substructure observables for identifying boosted topologies will play an essential role in maximizing the physics reach of the Large Hadron Collider. Ideally, the design of discriminating variables would be informed by analytic calculations in perturbative QCD. Unfortunately, explicit calculations are often not feasible due to the complexity of the observables used for discrimination, and so many validation studies rely heavily, and solely, on Monte Carlo. In this paper we show how methods based on the parametric power counting of the dynamics of QCD, familiar from effective theory analyses, can be used to design, understand, and make robust predictions for the behavior of jet substructure variables. As a concrete example, we apply power counting for discriminating boosted Z bosons from massive QCD jets using observables formed from the n-point energy correlation functions. We show that power counting alone gives a definite prediction for the observable that optimally separates the background-rich from the signal-rich regions of phase space. Power counting can also be used to understand effects of phase space cuts and the effect of contamination from pile-up, which we discuss. As these arguments rely only on the parametric scaling of QCD, the predictions from power counting must be reproduced by any Monte Carlo, which we verify using Pythia 8 and Herwig++. We also use the example of quark versus gluon discrimination to demonstrate the limits of the power counting technique.
Journal of High Energy Physics | 2016
Andrew J. Larkoski; Ian Moult; Duff Neill
A bstractObservables which discriminate boosted topologies from massive QCD jets are of great importance for the success of the jet substructure program at the Large Hadron Collider. Such observables, while both widely and successfully used, have been studied almost exclusively with Monte Carlo simulations. In this paper we present the first all-orders factorization theorem for a two-prong discriminant based on a jet shape variable, D2, valid for both signal and background jets. Our factorization theorem simultaneously describes the production of both collinear and soft subjets, and we introduce a novel zero-bin procedure to correctly describe the transition region between these limits. By proving an all orders factorization theorem, we enable a systematically improvable description, and allow for precision comparisons between data, Monte Carlo, and first principles QCD calculations for jet substructure observables. Using our factorization theorem, we present numerical results for the discrimination of a boosted Z boson from massive QCD background jets. We compare our results with Monte Carlo predictions which allows for a detailed understanding of the extent to which these generators accurately describe the formation of two-prong QCD jets, and informs their usage in substructure analyses. Our calculation also provides considerable insight into the discrimination power and calculability of jet substructure observables in general.
Journal of High Energy Physics | 2015
Andrew J. Larkoski; Duff Neill; Iain W. Stewart
A bstractThe singular limits of massless gauge theory amplitudes are described by an effective theory, called soft-collinear effective theory (SCET), which has been applied most successfully to make all-orders predictions for observables in collider physics and weak decays. At tree-level, the emission of a soft gauge boson at subleading order in its energy is given by the Low-Burnett-Kroll theorem, with the angular momentum operator acting on a lower-point amplitude. For well separated particles at tree-level, we prove the Low-Burnett-Kroll theorem using matrix elements of subleading SCET Lagrangian and operator insertions which are individually gauge invariant. These contributions are uniquely determined by gauge invariance and the reparametrization invariance (RPI) symmetry of SCET. RPI in SCET is connected to the infinite-dimensional asymptotic symmetries of the S-matrix. The Low-Burnett-Kroll theorem is generically spoiled by on-shell corrections, including collinear loops and collinear emissions. We demonstrate this explicitly both at tree-level and at one-loop. The effective theory correctly describes these configurations, and we generalize the Low-Burnett-Kroll theorem into a new one-loop subleading soft theorem for amplitudes. Our analysis is presented in a manner that illustrates the wider utility of using effective theory techniques to understand the perturbative S-matrix.
Journal of High Energy Physics | 2015
Andrew J. Larkoski; Ian Moult; Duff Neill
A bstractAn outstanding problem in QCD and jet physics is the factorization and resummation of logarithms that arise due to phase space constraints, so-called non-global logarithms (NGLs). In this paper, we show that NGLs can be factorized and resummed down to an unresolved infrared scale by making sufficiently many measurements on a jet or other restricted phase space region. Resummation is accomplished by renormalization group evolution of the objects in the factorization theorem and anomalous dimensions can be calculated to any perturbative accuracy and with any number of colors. To connect with the NGLs of more inclusive measurements, we present a novel perturbative expansion which is controlled by the volume of the allowed phase space for unresolved emissions. Arbitrary accuracy can be obtained by making more and more measurements so to resolve lower and lower scales. We find that even a minimal number of measurements produces agreement with Monte Carlo methods for leading-logarithmic resummation of NGLs at the sub-percent level over the full dynamical range relevant for the Large Hadron Collider. We also discuss other applications of our factorization theorem to soft jet dynamics and how to extend to higher-order accuracy.
Journal of High Energy Physics | 2014
Andrew J. Larkoski; Ian Moult; Duff Neill
A bstractThe analytic study of differential cross sections in QCD has typically focused on individual observables, such as mass or thrust, to great success. Here, we present a first study of double differential jet cross sections considering two recoil-free angularities measured on a single jet. By analyzing the phase space defined by the two angularities and using methods from soft-collinear effective theory, we prove that the double differential cross section factorizes at the boundaries of the phase space. We also show that the cross section in the bulk of the phase space cannot be factorized using only soft and collinear modes, excluding the possibility of a global factorization theorem in soft-collinear effective theory. Nevertheless, we are able to define a simple interpolation procedure that smoothly connects the factorization theorem at one boundary to the other. We present an explicit example of this at next-to-leading logarithmic accuracy and show that the interpolation is unique up to αs4 order in the exponent of the cross section, under reasonable assumptions. This is evidence that the interpolation is sufficiently robust to account for all logarithms in the bulk of phase space to the accuracy of the boundary factorization theorem. We compare our analytic calculation of the double differential cross section to Monte Carlo simulation and find qualitative agreement. Because our arguments rely on general structures of the phase space, we expect that much of our analysis would be relevant for the study of phenomenologically well-motivated observables, such as N -subjettiness, energy correlation functions, and planar flow.
Journal of High Energy Physics | 2015
Duff Neill; Ira Z. Rothstein; Varun Vaidya
A bstractIn this letter, we present the NNLL-NNLO transverse momentum Higgs distribution arising from gluon fusion. In the regime p⊥ ≪ mh we include the resummation of the large logs at next to next-to leading order and then match on to the αs2 fixed order result near p⊥ ∼ mh. By utilizing the rapidity renormalization group (RRG) we are able to smoothly match between the resummed, small p⊥ regime and the fixed order regime. We give a detailed discussion of the scale dependence of the result including an analysis of the rapidity scale dependence. Our central value differs from previous results, in the transition region as well as the tail, by an amount which is outside the error band. This difference is due to the fact that the RRG profile allows us to smoothly turn off the resummation.
Physical Review D | 2015
Andrew J. Larkoski; Ian Moult; Duff Neill
Distinguishing hadronically decaying boosted top quarks from massive QCD jets is an important challenge at the Large Hadron Collider. In this paper we use the power counting method to study jet substructure observables designed for top tagging, and gain insight into their performance. We introduce a powerful new family of discriminants formed from the energy correlation functions which outperform the widely used N-subjettiness. These observables take a highly non-trivial form, demonstrating the importance of a systematic approach to their construction.
Journal of High Energy Physics | 2016
Andrew J. Larkoski; Ian Moult; Duff Neill
A bstractNon-global logarithms (NGLs) are the leading manifestation of correlations between distinct phase space regions in QCD and gauge theories and have proven a challenge to understand using traditional resummation techniques. Recently, the dressed gluon ex-pansion was introduced that enables an expansion of the NGL series in terms of a “dressed gluon” building block, defined by an all-orders factorization theorem. Here, we clarify the nature of the dressed gluon expansion, and prove that it has an infinite radius of convergence as a solution to the leading logarithmic and large-Nc master equation for NGLs, the Banfi-Marchesini-Smye (BMS) equation. The dressed gluon expansion therefore provides an expansion of the NGL series that can be truncated at any order, with reliable uncertainty estimates. In contrast, manifest in the results of the fixed-order expansion of the BMS equation up to 12-loops is a breakdown of convergence at a finite value of αslog. We explain this finite radius of convergence using the dressed gluon expansion, showing how the dynamics of the buffer region, a region of phase space near the boundary of the jet that was identified in early studies of NGLs, leads to large contributions to the fixed order expansion. We also use the dressed gluon expansion to discuss the convergence of the next-to-leading NGL series, and the role of collinear logarithms that appear at this order. Finally, we show how an understanding of the analytic behavior obtained from the dressed gluon expansion allows us to improve the fixed order NGL series using conformal transformations to extend the domain of analyticity. This allows us to calculate the NGL distribution for all values of αslog from the coefficients of the fixed order expansion.