Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Duhee Yoon is active.

Publication


Featured researches published by Duhee Yoon.


Nature Communications | 2016

Atomically thin quantum light-emitting diodes

Carmen Palacios-Berraquero; Matteo Barbone; Dhiren M. Kara; Xiaolong Chen; Ilya Goykhman; Duhee Yoon; A. K. Ott; Jan Beitner; Kenji Watanabe; Takashi Taniguchi; A. C. Ferrari; Mete Atatüre

Transition metal dichalcogenides are optically active, layered materials promising for fast optoelectronics and on-chip photonics. We demonstrate electrically driven single-photon emission from localized sites in tungsten diselenide and tungsten disulphide. To achieve this, we fabricate a light-emitting diode structure comprising single-layer graphene, thin hexagonal boron nitride and transition metal dichalcogenide mono- and bi-layers. Photon correlation measurements are used to confirm the single-photon nature of the spectrally sharp emission. These results present the transition metal dichalcogenide family as a platform for hybrid, broadband, atomically precise quantum photonics devices.


ACS Nano | 2016

High Responsivity, Large-Area Graphene/MoS2 Flexible Photodetectors

Domenico De Fazio; Ilya Goykhman; Duhee Yoon; Matteo Bruna; Anna Eiden; Silvia Milana; U. Sassi; Matteo Barbone; Dumitru Dumcenco; Kolyo Marinov; Andras Kis; A. C. Ferrari

We present flexible photodetectors (PDs) for visible wavelengths fabricated by stacking centimeter-scale chemical vapor deposited (CVD) single layer graphene (SLG) and single layer CVD MoS2, both wet transferred onto a flexible polyethylene terephthalate substrate. The operation mechanism relies on injection of photoexcited electrons from MoS2 to the SLG channel. The external responsivity is 45.5A/W and the internal 570A/W at 642 nm. This is at least 2 orders of magnitude higher than bulk-semiconductor flexible membranes. The photoconductive gain is up to 4 × 105. The photocurrent is in the 0.1–100 μA range. The devices are semitransparent, with 8% absorptance at 642 nm, and are stable upon bending to a curvature of 1.4 cm. These capabilities and the low-voltage operation (<1 V) make them attractive for wearable applications.


ACS Nano | 2016

Photo-Induced Bandgap Renormalization Governs the Ultrafast Response of Single-Layer MoS2

Eva Arianna Aurelia Pogna; Margherita Marsili; Domenico De Fazio; Stefano Dal Conte; Cristian Manzoni; Davide Sangalli; Duhee Yoon; A. Lombardo; A. C. Ferrari; A. C. Marini; Giulio Cerullo; Deborah Prezzi

Transition metal dichalcogenides (TMDs) are emerging as promising two-dimensional (2D) semiconductors for optoelectronic and flexible devices. However, a microscopic explanation of their photophysics, of pivotal importance for the understanding and optimization of device operation, is still lacking. Here, we use femtosecond transient absorption spectroscopy, with pump pulse tunability and broadband probing, to monitor the relaxation dynamics of single-layer MoS2 over the entire visible range, upon photoexcitation of different excitonic transitions. We find that, irrespective of excitation photon energy, the transient absorption spectrum shows the simultaneous bleaching of all excitonic transitions and corresponding red-shifted photoinduced absorption bands. First-principle modeling of the ultrafast optical response reveals that a transient bandgap renormalization, caused by the presence of photoexcited carriers, is primarily responsible for the observed features. Our results demonstrate the strong impact of many-body effects in the transient optical response of TMDs even in the low-excitation-density regime.


Nature Communications | 2017

Large-scale quantum-emitter arrays in atomically thin semiconductors

Carmen Palacios-Berraquero; Dhiren M. Kara; Alejandro R.-P. Montblanch; Matteo Barbone; Pawel Latawiec; Duhee Yoon; A. K. Ott; Marko Loncar; A. C. Ferrari; Mete Atatüre

Quantum light emitters have been observed in atomically thin layers of transition metal dichalcogenides. However, they are found at random locations within the host material and usually in low densities, hindering experiments aiming to investigate this new class of emitters. Here, we create deterministic arrays of hundreds of quantum emitters in tungsten diselenide and tungsten disulphide monolayers, emitting across a range of wavelengths in the visible spectrum (610–680 nm and 740–820 nm), with a greater spectral stability than their randomly occurring counterparts. This is achieved by depositing monolayers onto silica substrates nanopatterned with arrays of 150-nm-diameter pillars ranging from 60 to 190 nm in height. The nanopillars create localized deformations in the material resulting in the quantum confinement of excitons. Our method may enable the placement of emitters in photonic structures such as optical waveguides in a scalable way, where precise and accurate positioning is paramount.


Nano Letters | 2016

Raman Fingerprints of Atomically Precise Graphene Nanoribbons.

Ivan Verzhbitskiy; Marzio De Corato; Alice Ruini; Elisa Molinari; Akimitsu Narita; Yunbin Hu; Matthias Georg Schwab; Matteo Bruna; Duhee Yoon; Silvia Milana; Xinliang Feng; Klaus Müllen; A. C. Ferrari; Cinzia Casiraghi; Deborah Prezzi

Bottom-up approaches allow the production of ultranarrow and atomically precise graphene nanoribbons (GNRs) with electronic and optical properties controlled by the specific atomic structure. Combining Raman spectroscopy and ab initio simulations, we show that GNR width, edge geometry, and functional groups all influence their Raman spectra. The low-energy spectral region below 1000 cm–1 is particularly sensitive to edge morphology and functionalization, while the D peak dispersion can be used to uniquely fingerprint the presence of GNRs and differentiates them from other sp2 carbon nanostructures.


Nature Communications | 2017

p-wave triggered superconductivity in single layer graphene on an electron-doped oxide superconductor

A. Di Bernardo; Oded Millo; Matteo Barbone; H. Alpern; Yoav Kalcheim; U. Sassi; A. K. Ott; Domenico De Fazio; Duhee Yoon; M. Amado; A. C. Ferrari; Jacob Linder; Jason Joseph Robinson

Electron pairing in the vast majority of superconductors follows the Bardeen–Cooper–Schrieffer theory of superconductivity, which describes the condensation of electrons into pairs with antiparallel spins in a singlet state with an s-wave symmetry. Unconventional superconductivity was predicted in single-layer graphene (SLG), with the electrons pairing with a p-wave or chiral d-wave symmetry, depending on the position of the Fermi energy with respect to the Dirac point. By placing SLG on an electron-doped (non-chiral) d-wave superconductor and performing local scanning tunnelling microscopy and spectroscopy, here we show evidence for a p-wave triggered superconducting density of states in SLG. The realization of unconventional superconductivity in SLG offers an exciting new route for the development of p-wave superconductivity using two-dimensional materials with transition temperatures above 4.2 K.


ACS Nano | 2016

Raman Radiation Patterns of Graphene

Harald Budde; Nicolás Coca-López; Xian Shi; Richard Ciesielski; A. Lombardo; Duhee Yoon; A. C. Ferrari; Achim Hartschuh

We report the angular distribution of the G and 2D Raman scattering from graphene on glass by detecting back focal plane patterns. The G Raman emission can be described by a superposition of two incoherent orthogonal point dipoles oriented in the graphene plane. Due to double resonant Raman scattering, the 2D emission can be represented by the sum of either three incoherent dipoles oriented 120° with respect to each other, or two orthogonal incoherent ones with a 3:1 weight ratio. Parameter-free calculations of the G and 2D intensities are in excellent agreement with the experimental radiation patterns. We show that the 2D polarization ratio and the 2D/G intensity ratio depend on the numerical aperture of the microscope objective. This is due to the depolarization of the emission and excitation light when graphene is on a dielectric substrate, as well as to tight focusing. The polarization contrast decreases substantially for increasing collection angle, due to polarization mixing caused by the air-dielectric interface. This also influences the intensity ratio I(2D)/I(G), a crucial quantity for estimating the doping in graphene. Our results are thus important for the quantitative analysis of the Raman intensities in confocal microscopy. In addition, they are relevant for understanding the influence of signal enhancing plasmonic antenna structures, which typically modify the sample’s radiation pattern.


Nature Communications | 2017

Terahertz saturable absorbers from liquid phase exfoliation of graphite

Vezio Bianchi; Tian Carey; Leonardo Viti; Lianhe Li; E. H. Linfield; A. Giles Davies; Alessandro Tredicucci; Duhee Yoon; Panagiotis Karagiannidis; Lucia Lombardi; Flavia Tomarchio; A. C. Ferrari; Felice Torrisi; Miriam S. Vitiello

Saturable absorbers (SA) operating at terahertz (THz) frequencies can open new frontiers in the development of passively mode-locked THz micro-sources. Here we report the fabrication of THz SAs by transfer coating and inkjet printing single and few-layer graphene films prepared by liquid phase exfoliation of graphite. Open-aperture z-scan measurements with a 3.5 THz quantum cascade laser show a transparency modulation ∼80%, almost one order of magnitude larger than that reported to date at THz frequencies. Fourier-transform infrared spectroscopy provides evidence of intraband-controlled absorption bleaching. These results pave the way to the integration of graphene-based SA with electrically pumped THz semiconductor micro-sources, with prospects for applications where excitation of specific transitions on short time scales is essential, such as time-of-flight tomography, coherent manipulation of quantum systems, time-resolved spectroscopy of gases, complex molecules and cold samples and ultra-high speed communications, providing unprecedented compactness and resolution.


Nature Nanotechnology | 2018

Broadband, electrically tunable third-harmonic generation in graphene

Giancarlo Soavi; Gang Wang; Habib Rostami; David Purdie; Domenico De Fazio; Teng Ma; Birong Luo; Junjia Wang; A. K. Ott; Duhee Yoon; Sean A. Bourelle; Jakob E. Muench; Ilya Goykhman; Stefano Dal Conte; Michele Celebrano; Andrea Tomadin; Marco Polini; Giulio Cerullo; A. C. Ferrari

Optical harmonic generation occurs when high intensity light (>1010 W m–2) interacts with a nonlinear material. Electrical control of the nonlinear optical response enables applications such as gate-tunable switches and frequency converters. Graphene displays exceptionally strong light–matter interaction and electrically and broadband tunable third-order nonlinear susceptibility. Here, we show that the third-harmonic generation efficiency in graphene can be increased by almost two orders of magnitude by controlling the Fermi energy and the incident photon energy. This enhancement is due to logarithmic resonances in the imaginary part of the nonlinear conductivity arising from resonant multiphoton transitions. Thanks to the linear dispersion of the massless Dirac fermions, gate controllable third-harmonic enhancement can be achieved over an ultrabroad bandwidth, paving the way for electrically tunable broadband frequency converters for applications in optical communications and signal processing.Gate tunable and ultrabroadband third-harmonic generation can be achieved in graphene, paving the way for electrically tunable broadband frequency converters for applications in optical communications and signal processing.


Small | 2018

Electrically Controlled Nano and Micro Actuation in Memristive Switching Devices with On-Chip Gas Encapsulation

Dean Kos; Hippolyte Pag Astier; Giuliana Di Martino; Jan Mertens; Hamid Ohadi; Domenico De Fazio; Duhee Yoon; Zhuang Zhao; Alexander Kuhn; A. C. Ferrari; C. J. B. Ford; Jeremy J. Baumberg

Nanoactuators are a key component for developing nanomachinery. Here, an electrically driven device yielding actuation stresses exceeding 1 MPa withintegrated optical readout is demonstrated. 10 nm thick Al2 O3 electrolyte films are sandwiched between graphene and Au electrodes. These allow reversible room-temperature solid-state redox reactions, producing Al metal and O2 gas in a memristive-type switching device. The resulting high-pressure oxygen micro-fuel reservoirs are encapsulated under the graphene, swelling to heights of up to 1 µm, which can be dynamically tracked by plasmonic rulers. Unlike standard memristors where the memristive redox reaction occurs in single or few conductive filaments, the mechanical deformation forces the creation of new filaments over the whole area of the inflated film. The resulting on-off resistance ratios reach 108 in some cycles. The synchronization of nanoactuation and memristive switching in these devices is compatible with large-scale fabrication and has potential for precise and electrically monitored actuation technology.

Collaboration


Dive into the Duhee Yoon's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. K. Ott

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar

U. Sassi

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ilya Goykhman

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Lombardo

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar

Matteo Bruna

University of Cambridge

View shared research outputs
Researchain Logo
Decentralizing Knowledge