Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Duk-Ju Hwang is active.

Publication


Featured researches published by Duk-Ju Hwang.


Planta | 2008

Identification of an OsPR10a promoter region responsive to salicylic acid

Seon-Hee Hwang; In Ah Lee; Se Won Yie; Duk-Ju Hwang

Orysa sativa pathogenesis-related protein 10a (OsPR10a) was induced by pathogens, salicylic acid (SA), jasmonic acid (JA), ethephon, abscisic acid (ABA), and NaCl. We tried to analyze the OsPR10a promoter to investigate the transcriptional regulation of OsPR10a by SA. We demonstrated the inducibility of OsPR10a promoter by SA using transgenic Arabidopsis carrying OsPR10a:GFP as well as by transient expression assays in rice. To further identify the promoter region responsible for its induction by SA, four different deletions of the OsPR10a promoter were made, and their activities were measured by transient assays. The construct containing 687-bp OsPR10a promoter from its start codon exhibited a six-fold increase of induction compared to the control in response to SA. Mutation in the W-box like element 1 (WLE 1) between 687 and 637-bp from TGACA to TGAAA completely abolished induction of the OsPR10a promoter by SA, indicating that the WLE 1 between −687 and −637 of OsPR10a promoter is important in SA-mediated OsPR10a expression. We show for the first time that the W-box like element plays a role in SA mediated PR gene expression.


Plant Science | 2011

Heterologous expression of OsWRKY6 gene in Arabidopsis activates the expression of defense related genes and enhances resistance to pathogens.

Seon-Hee Hwang; Se Won Yie; Duk-Ju Hwang

The WRKY proteins are a major family of plant transcription factors implicated in the regulation of plant defense mechanisms against pathogens. OsWRKY6 was isolated based on expression profiling data carried out with samples infected by Xanthomonas oryzae pv. oryzae (Xoo). OsWRKY6 encodes a DNA binding protein that contains one WRKY domain, a nuclear localization signal and C(2)H(2)-type zinc finger motif. OsWRKY6 is a member of the group II family of WRKY proteins. Based on the result of yeast one hybrid assay this OsWRKY6 protein binds to the typical W box ((T)TGACC/T). OsWRKY6 functions as a transcriptional activator in yeast. OsWRKY6 enhanced the expression of the reporter gene downstream of OsPR1 promoter, indicating that OsWRKY6 is a transcriptional activator in rice as well. Heterologous expression of OsWRKY6 enhanced disease resistance to pathogen. Defense-related genes were constitutively expressed in Arabidopsis transgenic lines overexpressing OsWRKY6. All together, OsWRKY6 functions as a positive transcriptional regulator of the plant defense response.


New Phytologist | 2015

Molecular characterization of Oryza sativa WRKY6, which binds to W-box-like element 1 of the Oryza sativa pathogenesis-related (PR) 10a promoter and confers reduced susceptibility to pathogens

Changhyun Choi; Seon-Hee Hwang; Il Ran Fang; Soon Il Kwon; Sang Ryeol Park; Il-Pyung Ahn; Jung Bong Kim; Duk-Ju Hwang

WRKY proteins are transcription factors (TFs) that regulate the expression of defense-related genes. The salicylic acid (SA)-inducible Oryza sativa WRKY6 (OsWRKY6) was identified as a positive regulator of Oryza sativa pathogenesis-related 10a (OsPR10a) by transient expression assays. A physical interaction between OsWRKY6 and W-box-like element 1 (WLE1), which positively regulates OsPR10a/probenazole induced protein 1 expression, was verified in vitro. Several pathogenesis-related (PR) genes were constitutively activated, including OsPR10a, and transgenic rice (Oryza sativa) plants overexpressing (ox) OsWRKY6 exhibited enhanced disease resistance to pathogens. By contrast, PR gene induction was compromised in transgenic OsWRKY6-RNAi lines, suggesting that OsWRKY6 is a positive regulator of defense responses. OsWRKY6-ox lines displayed leaf lesions, and increased OsWRKY6 levels caused cell death. Salicylic acid (SA) concentrations were higher in OsWRKY6-ox lines than in wild-type (WT) plants, and transcript levels of Oryza sativa isochorismate synthase 1 (OsICS1), which encodes a major enzyme involved in SA biosynthesis, were higher in OsWRKY6-ox lines than in WT. OsWRKY6 directly bound to the OsICS1 promoter in vivo. This indicates that OsWRKY6 can directly regulate OsICS1 expression and thereby increase SA concentrations. OsWRKY6 autoregulates its own expression. OsWRKY6 protein degradation is possibly regulated by ubiquitination. Our results suggest that OsWRKY6 positively regulates defense responses through activation of OsICS1 expression and OsWRKY6 stabilization.


Gene | 2013

Expression analysis of rice VQ genes in response to biotic and abiotic stresses

Dae Yong Kim; Soon Il Kwon; Chang Sun Choi; H. J. Lee; Il-Pyung Ahn; Sung-Han Park; Shin-Chul Bae; Sang Chol Lee; Duk-Ju Hwang

WRKY transcription factors are encoded by a large gene superfamily with a broad range of roles in plants. Proteins containing a short VQ (FxxxVQxLTG) motif have been recently shown to interact with WRKY transcription factors, implying that AtVQ proteins are important in the plant defense responses in Arabidopsis, either as positive or negative cofactors of WRKY transcription factors. Thirty-nine Oryza sativa genes containing the VQ motif (OsVQs) were identified and the genome structures of OsVQ proteins were characterized through genome-wide analysis in rice. Also, phylogenetic tree analysis was performed with the VQ domain of Arabidopsis and rice. The expression patterns of these OsVQ genes in plants under several stress treatments were assessed, specifically, following infection with the bacterial pathogen Xanthomonas oryzae pv. oryzae (Xoo), treatment with abscisic acid (ABA), or exposure to drought. The cellular localization of a few OsVQ proteins was examined using rice protoplast system. Based on our results, we suggest that OsVQ proteins function as important co-regulators during the plant defense response to biotic and abiotic stresses.


Rice | 2013

Transcriptome analysis of leaf and root of rice seedling to acute dehydration

Pham-Thi Minh-Thu; Duk-Ju Hwang; Jong-Seong Jeon; Baek Hie Nahm; Yeon-Ki Kim

BackgroundWater deficiency is one of the most serious worldwide problems for agriculture. Recently, it has become more serious and outspread, which urgently requires the production of drought-tolerant plants. Microarray experiments using mRNA from air-dried leaves and roots of rice were performed in an attempt to study genes involved in acute dehydration response.ResultsSet of 10,537 rice genes was significantly up- or down-regulated in leaves or roots under the treatment. Gene Ontology analysis highlighted gene expression during acute dehydration response depending on organ types and the duration of stress. Rice responded by down-regulating many processes which are mainly involved in inhibiting growth and development. On the other hand, phytohormones (ABA, cytokinin, brassinosteroid) and protective molecules were induced to answer to multiple stresses. Leaves induced more genes than roots but those genes were scattered in various processes, most significantly were productions of osmoprotectants and precursors for important pathways in roots. Roots up-regulated fewer genes and focused on inducing antioxidants and enhancing photosynthesis. Myb, zf-C3HC4, and NAM were most strongly affected transcription factors with the dominance of leaf over root.ConclusionsLeaf and root tissues shared some common gene expression during stress, with the purpose of enhancing protective systems. However, these two tissues appeared to act differently in response to the different level of dehydration they experience. Besides, they can affect each other via the signaling and transportation system.


Molecules and Cells | 2011

Priming by Rhizobacterium Protects Tomato Plants from Biotrophic and Necrotrophic Pathogen Infections through Multiple Defense Mechanisms

Il-Pyung Ahn; Sang-Woo Lee; Min Gab Kim; Sang-Ryeol Park; Duk-Ju Hwang; Shin-Chul Bae

A selected strain of rhizobacterium, Pseudomonas putida strain LSW17S (LSW17S), protects tomato plants (Lycopersicon esculentum L. cv. Seokwang) from bacterial speck by biotrophic Pseudomonas syringae pv. tomato strain DC3000 (DC3000) and bacterial wilt by necrotrophic Ralstonia solanacearum KACC 10703 (Rs10703). To investigate defense mechanisms induced by LSW17S in tomato plants, transcription patterns of pathogenesis-related (PR) genes and H2O2 production were analyzed in plants treated with LSW17S and subsequent pathogen inoculation. LSW17S alone did not induce transcriptions of employed PR genes in leaves and roots. DC3000 challenge following LSW17S triggered rapid transcriptions of PR genes and H2O2 production in leaves and roots. Catalase infiltration with DC3000 attenuated defense-related responses and resistance against DC3000 infection. Despite depriving H2O2 production and PR1b transcription by the same treatment, resistance against Rs10703 infection was not deterred significantly. H2O2 is indispensable for defense signaling and/or mechanisms primed by LSW17S and inhibition of bacterial speck, however, it is not involved in resistance against bacterial wilt.


Plant Cell Reports | 2012

Over-expression of rice leucine-rich repeat protein results in activation of defense response, thereby enhancing resistance to bacterial soft rot in Chinese cabbage

Young Ho Park; Changhyun Choi; Eun Mi Park; Hyo Sun Kim; Hong Jae Park; Shin Cheol Bae; Il-Pyung Ahn; Min Gab Kim; Sang Ryeol Park; Duk-Ju Hwang

Pectobacterium carotovorum subsp. carotovorum causes soft rot disease in various plants, including Chinese cabbage. The simple extracellular leucine-rich repeat (eLRR) domain proteins have been implicated in disease resistance. Rice leucine-rich repeat protein (OsLRP), a rice simple eLRR domain protein, is induced by pathogens, phytohormones, and salt. To see whether OsLRP enhances disease resistance to bacterial soft rot, OsLRP was introduced into Chinese cabbage by Agrobacterium-mediated transformation. Two independent transgenic lines over-expressing OsLRP were generated and further analyzed. Transgenic lines over-expressing OsLRP showed enhanced disease resistance to bacterial soft rot compared to non-transgenic control. Bacterial growth was retarded in transgenic lines over-expressing OsLRP compared to non-transgenic controls. We propose that OsLRP confers enhanced resistance to bacterial soft rot. Monitoring expression of defense-associated genes in transgenic lines over-expressing OsLRP, two different glucanases and Brassica rapa polygalacturonase inhibiting protein 2, PDF1 were constitutively activated in transgenic lines compared to non-transgenic control. Taken together, heterologous expression of OsLRP results in the activation of defense response and enhanced resistance to bacterial soft rot.


Plant Biotechnology Reports | 2014

Identification of AtWRKY75 as a transcriptional regulator in the defense response to Pcc through the screening of Arabidopsis activation-tagged lines

Changhyun Choi; Young Ho Park; Soon Il Kwon; Chunghyo Yun; Il-Pyung Ahn; Sang Ryeol Park; Duk-Ju Hwang

The necrotrophic pathogen Pectobacterium carotovorum ssp. carotovorum (Pcc) causes soft rot in a broad range of plant hosts. Approximately 60,000 independent seeds from Arabidopsis activation tagging lines were inoculated with Pcc and screened for resistant mutants. An Rpe1 (resistance protein to Pectobacterium 1) mutant, which had more resistance to Pcc than wild-type (WT) plants, was selected for further study. The T-DNA inserting locus in Rpe1 was located on the middle of chromosome V by flanking sequence analysis. Through expression analysis with several genes adjacent to the T-DNA tagging region, AtWRKY75 gene was highly up-regulated in the Rpe1 mutant compared to the WT plant. The up-regulation of AtWRKY75 gene was shown to be correlated on the induction of the PDF1.2, VSP1 and PR1 genes compared to the WT plant. AtWRKY75 over-expression lines exhibited reduced Pcc bacterial growth compared to WT. Taken together, our data suggest that AtWRKY75 should be a positive regulator in the JA- or SA-mediated defense signaling responses to Pcc.


Journal of Microbiology | 2013

Evaluation of bakanae disease progression caused by Fusarium fujikuroi in Oryza sativa L.

In Sun Hwang; Woo-Ri Kang; Duk-Ju Hwang; Shin-Chul Bae; Sung-Hwan Yun; Il-Pyung Ahn

Bakanae disease caused by Fusarium fujikuroi is an important fungal disease in rice. Among the seven strains isolated from symptomatic rice grains in this study, one strain, FfB14, triggered severe root growth inhibition and decay in the crown and root of rice seedlings. The remaining six strains caused typical Bakanae symptoms such as etiolation and abnormal succulent rice growth. To reveal the relationship between mycelial growth in the infected tissues and Bakanae disease progression, we have established a reliable quantification method using real time PCR that employs a primer pair and dual-labeled probe specific to a unigene encoding F. fujikuroi PNG1 (FfPNG1), which is located upstream of the fumonisin biosynthesis gene cluster. Plotting the crossing point (CP) values from the infected tissue DNAs on a standard curve revealed the active fungal growth of FfB14 in the root and crown of rice seedlings, while the growth rate of FfB20 in rice was more than 4 times lower than FfB14. Massive infective mycelial growth of FfB14 was evident in rice stems and crown; however, FfB20 did not exhibit vigorous growth. Our quantitative evaluation system is applicable for the identification of fungal virulence factors other than gibberellin.


Plant Cell Reports | 2016

OsWRKY51, a rice transcription factor, functions as a positive regulator in defense response against Xanthomonas oryzae pv. oryzae

Seon-Hee Hwang; Soon Il Kwon; Ji-Young Jang; Il Lan Fang; Heyoung Lee; Changhyun Choi; Sang-Ryeol Park; Il-Pyung Ahn; Shin-Chul Bae; Duk-Ju Hwang

Key messageOsWRKY51 functions as a positive transcriptional regulator in defense signaling againstXanthomonas oryzae pv. oryzaeby direct DNA binding to the promoter of defense related gene, OsPR10a.AbstractOsWRKY51 in rice (Oryza sativa L.) is induced by exogenous salicylic acid (SA) and inoculation with Xanthomonas oryzae pv. oryzae (Xoo). To examine the role of OsWRKY51 in the defense response of rice, we generated OsWRKY51 overexpressing and underexpressing transgenic rice plants. OsWRKY51-overexpressing transgenic rice lines were more resistant to Xoo and showed greater expression of defense-related genes than wild-type (WT) plants, while OsWRKY51-underexpressing lines were more susceptible to Xoo and showed less expression of defense-associated genes than WT plants. Transgenic lines overexpressing OsWRKY51 showed growth retardation compared to WT plants. In contrast, transgenic lines underexpressing OsWRKY51 by RNA interference showed similar plant height with WT plants. Transient expression of OsWRKY51-green fluorescent protein fusion protein in rice protoplasts revealed that OsWRKY51 was localized in the nucleus. OsWRKY51 bound to the W-box and WLE1 elements of the OsPR10a promoter. Based on these results, we suggest that OsWRKY51 is a positive transcriptional regulator of defense signaling and has direct DNA binding ability to the promoter of OsPR10a, although it is reported to be a negative regulator in GA signaling.

Collaboration


Dive into the Duk-Ju Hwang's collaboration.

Top Co-Authors

Avatar

Il-Pyung Ahn

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Shin-Chul Bae

Rural Development Administration

View shared research outputs
Top Co-Authors

Avatar

Sang Ryeol Park

Rural Development Administration

View shared research outputs
Top Co-Authors

Avatar

Sang-Ryeol Park

Rural Development Administration

View shared research outputs
Top Co-Authors

Avatar

Changhyun Choi

Rural Development Administration

View shared research outputs
Top Co-Authors

Avatar

Min Gab Kim

Gyeongsang National University

View shared research outputs
Top Co-Authors

Avatar

Seon-Hee Hwang

Rural Development Administration

View shared research outputs
Top Co-Authors

Avatar

Soon Il Kwon

Rural Development Administration

View shared research outputs
Top Co-Authors

Avatar

Mukhamad Su’udi

Gyeongsang National University

View shared research outputs
Top Co-Authors

Avatar

Woo-Ri Kang

Rural Development Administration

View shared research outputs
Researchain Logo
Decentralizing Knowledge