Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Duk Kyu Kim is active.

Publication


Featured researches published by Duk Kyu Kim.


Biochemical and Biophysical Research Communications | 2002

Fenofibrate lowers abdominal and skeletal adiposity and improves insulin sensitivity in OLETF rats

Hyung-Sik Lee; Seok-Ryeol Choi; Mi-Kyoung Park; Y.J. An; Su-Yeong Seo; Myoung-Ae Kim; Sook-Hee Hong; Tae-Ho Hwang; Do-Young Kang; A.J. Garber; Duk Kyu Kim

The effect of peroxisome proliferator-activated receptor (PPAR)-alpha activators on the liver is well established, but the other effects on muscle and adipose tissue about lipid metabolism and insulin sensitivity are not clear. We investigated whether PPAR-alpha activation affects adiposity of skeletal muscle as well as adipose tissue and improves insulin sensitivity in spontaneous type 2 diabetes model, Otsuka Long-Evans Tokushima Fatty (OLETF) rats. Thirty-three weeks of aged, 20 male OLETF rats were divided into two groups. Control group (n=10) was fed with chow and treatment group (n=10) with chow contained fenofibrate for 7 weeks. At the age of 40 weeks, all rats were examined with MRI, intravenous glucose tolerance test, and then sacrificed for measurement of fat mass and RNA analyses. The total fat (the sum of subcutaneous, mesenteric, epididymal, and retroperitoneal fat pads) measured by dissection was significantly reduced in treatment group. The signal intensity of muscular adiposity was significantly decreased in treatment group. The mRNA levels of FAT/CD36 and mitochondrial carnitine palmitoyltransferase I (M-CPT I) in liver were remarkably increased. Fasting plasma insulin and leptin levels, insulin response after intravenous glucose loading and homeostasis model assessment insulin resistance (HOMA(IR)) index were lowered in treatment group. Fenofibrate increase mitochondrial fatty acid beta-oxidation in liver but not in skeletal muscle and lower the plasma levels of triglyceride and free fatty acid. It might result in reduction of adiposity of truncal adipose tissue and skeletal muscle. We suggest that reduction of adiposity in trunk and skeletal muscle might improve insulin sensitivity.


Journal of Korean Medical Science | 2014

Comparison of Acarbose and Voglibose in Diabetes Patients Who Are Inadequately Controlled with Basal Insulin Treatment: Randomized, Parallel, Open-Label, Active-Controlled Study

Mi Young Lee; Dong Seop Choi; Moon Kyu Lee; Hyoung Woo Lee; Tae Sun Park; Doo Man Kim; Choon Hee Chung; Duk Kyu Kim; In Joo Kim; Hak Chul Jang; Yongsoo Park; Hyuk-Sang Kwon; Seung-Hun Lee; Hee Kang Shin

We studied the efficacy and safety of acarbose in comparison with voglibose in type 2 diabetes patients whose blood glucose levels were inadequately controlled with basal insulin alone or in combination with metformin (or a sulfonylurea). This study was a 24-week prospective, open-label, randomized, active-controlled multi-center study. Participants were randomized to receive either acarbose (n=59, 300 mg/day) or voglibose (n=62, 0.9 mg/day). The mean HbA1c at week 24 was significantly decreased approximately 0.7% from baseline in both acarbose (from 8.43% ± 0.71% to 7.71% ± 0.93%) and voglibose groups (from 8.38% ± 0.73% to 7.68% ± 0.94%). The mean fasting plasma glucose level and self-monitoring of blood glucose data from 1 hr before and after each meal were significantly decreased at week 24 in comparison to baseline in both groups. The levels 1 hr after dinner at week 24 were significantly decreased in the acarbose group (from 233.54 ± 69.38 to 176.80 ± 46.63 mg/dL) compared with the voglibose group (from 224.18 ± 70.07 to 193.01 ± 55.39 mg/dL). In conclusion, both acarbose and voglibose are efficacious and safe in patients with type 2 diabetes who are inadequately controlled with basal insulin. (ClinicalTrials.gov number, NCT00970528)


Endocrinology | 2010

Systemic Delivery of TNF-Related Apoptosis-Inducing Ligand (TRAIL) Elevates Levels of Tissue Inhibitor of Metalloproteinase-1 (TIMP-1) and Prevents Type 1 Diabetes in Nonobese Diabetic Mice

Soojeong Kang; Eun-Jin Park; Yeonsoo Joe; Eunhui Seo; Mi-Kyoung Park; Su-Young Seo; Hae Young Chung; Young Hyun Yoo; Duk Kyu Kim; Hye-Jeong Lee

Recent studies have demonstrated that TNF-related apoptosis-inducing ligand (TRAIL) is a modulator of the immune response. The relation between TRAIL and type 1 diabetes (T1D) as an autoimmune inflammatory disease in vivo is relatively unknown. To explore the potential role of TRAIL in the development of T1D, we examined its in vivo effects in nonobese diabetic (NOD) mice. NOD mice at 7 wk of age were iv injected with an adenovirus carrying either human TRAIL (Ad.hTRAIL) or β-galactosidase genes. Blood glucose was monitored weekly, and the expression of hTRAIL was evaluated in plasma and liver of mice. To investigate whether hTRAIL elicits its effect through the induction of tissue inhibitor of metalloproteinase-1 (TIMP-1), we examined the concentration of plasma TIMP-1 by ELISA and the inhibition of matrix metalloproteinase (MMP) by gelatin zymography. Here, we show that Ad.hTRAIL-transduced mice had significantly reduced blood glucose levels and markedly increased production of TIMP-1 compared with control β-galactosidase animals. Pancreatic tissue isolated from Ad.hTRAIL-treated NOD mice showed reduced MMP activities associated with significantly improved insulitis. In addition, TIMP-1 in vitro suppressed cytokine-induced apoptosis in insulin-producing INS-1 cells. These results indicate that T1D can be prevented by TRAIL overexpression through enhancement of TIMP-1 function. Elevated TIMP-1 production inhibits the activity of MMPs, which may contribute to suppress the transmigration of diabetogenic T cells into the pancreatic islets and protects pancreatic β-cells from cytokine-induced apoptosis. Therefore, TRAIL and TIMP-1 induction may be potential targets to prevent development of T1D.


Endocrinology and Metabolism | 2015

Subclinical Hypothyroidism and Cardiovascular Disease

Sunghwan Suh; Duk Kyu Kim

Subclinical hypothyroidism (SCH) is a common disorder that is characterized by elevated thyroid-stimulating hormone levels in conjunction with free thyroxine concentrations within the normal reference range. Thyroid hormones are known to affect the heart and vasculature and, as a result, the impact of SCH on the cardiovascular (CV) system has recently become an important topic of research. Strong evidence points to a link between SCH and CV risk factors such as alterations in blood pressure, lipid levels, and atherosclerosis. Additionally, accumulating evidence indicates that SCH is associated with metabolic syndrome and heart failure. The present review proposes that SCH may be a potentially modifiable risk factor of CV disease and mortality. However, large-scale clinical trials with appropriate power investigating the risks and benefits of SCH treatment are required to determine whether these benefits can be achieved with levothyroxine therapy.


Biochemical and Biophysical Research Communications | 2010

The hyperleptinemia and ObRb expression in hyperphagic obese rats

Ying Han; Yeonsoo Joe; Eunhui Seo; Sa Rah Lee; Mi-Kyoung Park; Hye-Jeong Lee; Duk Kyu Kim

Leptin resistance associated with hyperleptinemia in high-fat-diet-induced obese rats and aged obese rats is well established, but it is not clear whether hyperphagia-induced obese rats also develop leptin resistance. We investigated whether Otsuka Long-Evans Tokushima Fatty (OLETF) rats, which are a strain of hyperphagia-induced obese rats, develop leptin resistance and whether caloric restriction reversed this leptin resistance-induced leptin receptor (ObRb) deficit. Twenty male OLETF rats, 20 male Long-Evans Tokushima Otsuka (LETO) rats, and 10 male Sprague Dawley (SD) rats were used. All rats were initially studied at 10 weeks of age and were freely fed with standard rat chow and water until they were 38 weeks of age. Daily food intake, body weight, and plasma leptin levels of OLETF rats were remarkably increased compared to LETO or SD rats from 10 to 38 weeks of age. When they were 38 weeks of age, all OLETF rats were randomly divided into two groups. One group was freely fed with standard rat chow (FD, or free diet group), and the other group (RD, or restricted diet group) was fed with only 70% of the amount consumed by the FD group. The LETO and SD rats were dismissed from further study. After 4 weeks of caloric restriction, the average body weight (636+/-33 g vs. 752+/-24 g, P<0.05) and abdominal adipose tissue weight (10.6+/-3.2g vs. 15.8+/-1.5 g, P<0.05) of the RD group were decreased compared with those of the FD group. Plasma leptin levels of the RD group were significantly decreased compared with those of the FD group (3.47+/-1.40 ng/mL vs. 11.55+/-1.16 ng/mL, P<0.05). The mRNA expression of ObRb and leptin-related suppressor of cytokine signaling 3 (SOCS3) in the hypothalamus, liver, and skeletal muscles of the RD group were significantly decreased compared with those of the FD group. Caloric restriction did not improve leptin receptor (ObRb) deficit or the downstream signaling of leptin in the liver, skeletal muscles, and hypothalamus. Thus, we demonstrated that OLETF rats, which are a strain of hyperphagia-induced obese rats, did not develop central or peripheral leptin resistance. We suggest that hyperleptinemia in OLETF rats is a compensatory mechanism to overcome obesity induced by hyperphagia.


Endocrinology and Metabolism | 2014

Sex Factors in the Metabolic Syndrome as a Predictor of Cardiovascular Disease

Sunghwan Suh; Jongha Baek; Ji Cheol Bae; Kyoung-Nyoun Kim; Mi Kyoung Park; Duk Kyu Kim; Nam H. Cho; Moon-Kyu Lee

Background Metabolic syndrome (MetS) is a condition characterized by a cluster of metabolic disorders and is associated with increased risk of cardiovascular disease (CVD). This study analyzed data from the Korean Health and Genome Study to examine the impact of MetS on CVD. Methods A total of 8,898 subjects (4,241 males and 4,657 females), 40 to 69 years of age, were enrolled and evaluated for the development of new onset CVD from 2001 to 2012 (median 8.1 years of follow-up). Results The prevalence of MetS at baseline was 22.0% (932/4,241) and 29.7% (1,383/4,657) in males and females, respectively. MetS was associated with increased risk of coronary heart disease (CHD; hazard ratio [HR], 1.818; 95% confidence interval [CI], 1.312 to 2.520 in males; HR, 1.789; 95% CI, 1.332 to 2.404 in females) and CVD (HR, 1.689; 95% CI, 1.295 to 2.204 in males; HR, 1.686; 95% CI, 1.007 to 2.192 in females). Specifically, MetS was associated with risk of future stroke in females only (HR, 1.486; 95% CI, 1.007 to 2.192). Among MetS components, abdominal obesity and hypertension were independent predictors of both CHD and CVD. In addition, a higher number of MetS components correlated with higher CVD risk. Conclusion MetS is a significant risk factor for the development of CVD although its impact varies between sexes.


The Korean Journal of Physiology and Pharmacology | 2010

Differential Expression of Metabolism-related Genes in Liver of Diabetic Obese Rats.

Eunhui Seo; Eun-Jin Park; Mi-Kyoung Park; Duk Kyu Kim; Hye-Jeong Lee; Sook-Hee Hong

The Otsuka Long-Evans Tokushima Fatty (OLETF) rat, a model of spontaneous type 2 diabetes (T2D), develops hyperglycemic obesity with hyperinsulinemia and insulin resistance after the age of 25 weeks, similar to patients with noninsulin-dependent diabetes mellitus (DM). In the present study, we determined whether there are differences in the pattern of gene expression related to glucose and lipid metabolism between OLETF rats and their control counterparts, Long-Evans Tokushima (LETO) rats. The experiment was done using 35-week-old OLETF and LETO rats. At week 35 male OLETF rats showed overt T2D and increases in blood glucose, plasma insulin, plasma triglycerides (TG) and plasma total cholesterol (TC). Livers of diabetic OLETF and LETO rats also showed differences in expression of mRNA for glucose and lipid metabolism related genes. Among glucose metabolism related genes, GAPDH mRNA was significantly higher and FBPase and G6Pase mRNA were significantly lower in OLETF rats. For lipid metabolism related genes, HMGCR, SCD1 and HL mRNA were substantially higher in OLETF rats. These results indicate that gluconeogenesis in OLETF rats is lower and glycolysis is higher, which means that glucose metabolism might be compensated for by a lowering of the blood glucose level. However, lipid synthesis is increased in OLETF rats so diabetes may be aggravated. These differences between OLETF and LETO rats suggest mechanisms that could be targeted during the development of therapeutic agents for diabetes.


The Korean Journal of Physiology and Pharmacology | 2012

Reduction of Food Intake by Fenofibrate is Associated with Cholecystokinin Release in Long-Evans Tokushima Rats

Mi-Kyoung Park; Ying Han; Mi Sun Kim; Eunhui Seo; Soojeong Kang; So-Young Park; Hyeongjong Koh; Duk Kyu Kim; Hye-Jeong Lee

Fenofibrate is a selective peroxisome proliferator-activated receptor α (PPARα) activator and is prescribed to treat hyperlipidemia. The mechanism through which PPARα agonists reduce food intake, body weight, and adiposity remains unclear. One explanation for the reduction of food intake is that fenofibrate promotes fatty acid oxidation and increases the production of ketone bodies upon a standard experimental dose of the drug (100~300 mg/kg/day). We observed that low-dose treatment of fenofibrate (30 mg/kg/day), which does not cause significant changes in ketone body synthesis, reduced food intake in Long-Evans Tokushima (LETO) rats. LETO rats are the physiologically normal controls for Otsuka Long-Evans Tokushima Fatty (OLETF) rats, which are obese and cholecystokinin (CCK)-A receptor deficient. We hypothesized that the reduced food intake by fenofibrate-treated LETO rats may be associated with CCK production. To investigate the anorexic effects of fenofibrate in vivo and to determine whether CCK production may be involved, we examined the amount of food intake and CCK production. Fenofibrate-treated OLETF rats did not significantly change their food intake while LETO rats decreased their food intake. Treatment of fenofibrate increased CCK synthesis in the duodenal epithelial cells of both LETO and OLETF rats. The absence of a change in the food intake of OLETF rats, despite the increase in CCK production, may be explained by the absence of CCK-A receptors. Contrary to the OLETF rats, LETO rats, which have normal CCK receptors, presented a decrease in food intake and an increase in CCK production. These results suggest that reduced food intake by fenofibrate treatment may be associated with CCK production.


Journal of Diabetes Investigation | 2013

Diabetes mellitus, but not small dense low-density lipoprotein, is predictive of cardiovascular disease: A Korean community-based prospective cohort study.

Sunghwan Suh; Hyung-Doo Park; Sang-Man Jin; Hye Jeong Kim; Ji Cheol Bae; So Young Park; Mi Kyoung Park; Duk Kyu Kim; Nam H. Cho; Moon-Kyu Lee

Small dense low‐density lipoprotein (sdLDL) has been suggested to be a potential risk factor for cardiovascular diseases (CVD).


The Korean Journal of Physiology and Pharmacology | 2010

Fenofibrate Reduces Age-related Hypercholesterolemia in Normal Rats on a Standard Diet.

Ying Han; Mi-Hyang Do; Mi Sun Kim; Eunhui Seo; Mi-Kyoung Park; Duk Kyu Kim; Hye-Jeong Lee; Su-Yeong Seo

Plasma cholesterol is increased in normal aging in both rodents and humans. This is associated with reduced elimination of cholesterol and decreased receptor-mediated clearance of plasma low-density lipoprotein (LDL) cholesterol. The aims of this study were: (1) to determine age-related changes in plasma lipid profiles, and (2) to determine the effect of fenofibrate, an activator of peroxisome proliferator activated receptor alpha (PPAR alpha), on plasma lipid profiles in normal rats on a standard diet. Male Sprague-Dawley (SD) rats (n=15) were fed standard chow and water from 10 to 25 weeks of age. During that period, we measured daily food intake, body weight, fasting and random blood glucose levels, plasma total cholesterol (TC), triglycerides (TG), and free fatty acid (FFA) levels. At 20 weeks of age, all rats were randomly divided into two groups: a fenofibrate group (in which rats were gavaged with 300 mg/kg/day of fenofibrate) and a control group (gavaged with water). Fenofibrate treatment lasted 5 weeks. There were no significant changes in daily food intake, blood glucose, and plasma TG level with age. Body weight, plasma TC, and FFA levels were significantly increased with age. Fenofibrate significantly decreased plasma concentrations of TC and FFA, which had been increased with age. However, fenofibrate did not influence the plasma concentration of TG, which had not increased with age. These results suggest that fenofibrate might have a novel role in preventing age-related hypercholesterolemia in SD rats on a normal diet.

Collaboration


Dive into the Duk Kyu Kim's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge