Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Duk Soon Choi is active.

Publication


Featured researches published by Duk Soon Choi.


Journal of Pharmaceutical Sciences | 2013

Improved Human Bioavailability of Vemurafenib, a Practically Insoluble Drug, Using an Amorphous Polymer-Stabilized Solid Dispersion Prepared by a Solvent-Controlled Coprecipitation Process

Navnit Shah; Raman Mahadevan Iyer; Hans-Juergen Mair; Duk Soon Choi; Hung Tian; Ralph Diodone; Karsten Fähnrich; Anni Pabst-Ravot; Kin Tang; Emmanuel Scheubel; Joseph F. Grippo; Sebastian A. Moreira; Zenaida Go; James Mouskountakis; Theresa Louie; Prabha N. Ibrahim; Harpreet K. Sandhu; Linda Rubia; Hitesh Chokshi; Dharmendra Singhal; Waseem Malick

The present work deals with improving the solubility of vemurafenib, a practically insoluble drug, by converting it into an amorphous-solid dispersion using a solvent-controlled precipitation process. The dispersion containing vemurafenib and hypromellose acetate succinate (HPMCAS), an enteric polymer, is termed microprecipitated bulk powder (MBP), in which the drug is uniformly dispersed within the polymeric substrate. HPMCAS was found to be the most suitable polymer for vemurafenib MBP, among a series of enteric polymers based on superior physical stability and drug-release characteristics of the MBP. The MBP provided a greater rate and extent of dissolution than crystalline drug, reaching an apparent drug concentration of 28-35 µg/mL, almost 30-fold higher than solubility of crystalline drug at 1 µg/mL. The supersaturation was also maintained for more than 4 h. Upon exposure to high temperature and humidity, the MBP was destabilized, resulting in crystallization and lower dissolution rate. The control of moisture and temperature is essential to maintain the stability of the MBP. In a relative human bioavailability study, vemurafenib MBP provided a four- to fivefold increase in exposure compared with crystalline drug. Improving solubility with an amorphous-solid dispersion is a viable strategy for the development of practically insoluble compounds.


International Journal of Pharmaceutics | 2008

Evaluation of solid state properties of solid dispersions prepared by hot-melt extrusion and solvent co-precipitation

Zedong Dong; Ashish Chatterji; Harpreet K. Sandhu; Duk Soon Choi; Hitesh Chokshi; Navnit Shah

The solid state properties of solid dispersions of Compound A in hypromellose acetate succinate (HPMC-AS) prepared by hot-melt extrusion (HME) and solvent co-precipitation (CP) processes were evaluated using powder X-ray diffractometry (PXRD), thermal analysis, optical microscopy, scanning electron microscopy (SEM), FT-IR and Raman spectroscopy, water vapor sorption analyzer, and surface area by BET. PXRD indicated that both processes converted the crystalline drug into amorphous solid dispersions with a glass transition temperature around 104-107 degrees C and both products have similar spectroscopic and hygroscopic properties. The two products have similar true densities; however, the CP product is more porous and has a larger specific surface area than the HME product, as indicated by the BET results and SEM micrographs. Dissolution study using USP apparatus 2 showed that the CP product had a faster dissolution profile, but slower intrinsic dissolution rate than the HME product. The two products have acceptable physical stability after storage in 40 degrees C/75% RH chamber for 3 months. However, the HME product is more stable than the CP product in aqueous suspension formulation.


Journal of Pharmaceutical Sciences | 2011

Prediction of the thermal phase diagram of amorphous solid dispersions by Flory-Huggins theory.

Yinyan Zhao; Petra Inbar; Hitesh Chokshi; A. Wasseem Malick; Duk Soon Choi

Miscibility of drug and polymer is one of the key parameters in amorphous formulation design. The purpose of this work is to provide a theoretical approach to evaluate miscibility between drug and polymer in amorphous solid dispersions. The model system is indomethacin and polyvinylpyrrolidone-vinyl acetate copolymer. The Flory-Huggins (F-H) interaction parameter, χ, of drug and polymer was estimated at different temperatures by two methods: melting point depression of drug in various polymer ratios at the melting temperature, and Hildebrand and Scott solubility parameter calculation at 25°C. The simplified first-order relation between the F-H interaction parameter and temperature was established. This allows the construction of a temperature-composition phase diagram of a two-component amorphous system. The spinodal curve was generated and provides an insight into the thermodynamic stability of an amorphous solid dispersion at various temperatures. The predicted stability of the model system was compared with the experimental data. The merits and deficiency of the proposed approach were fully discussed.


International Journal of Pharmaceutics | 2012

Development of novel microprecipitated bulk powder (MBP) technology for manufacturing stable amorphous formulations of poorly soluble drugs.

Navnit Shah; Harpreet K. Sandhu; Wantanee Phuapradit; Rodolfo Pinal; Raman Mahadevan Iyer; Antonio A. Albano; Ashish Chatterji; Shalini Anand; Duk Soon Choi; Kin Tang; Hung Tian; Hitesh Chokshi; Dharmendra Singhal; Waseem Malick

A novel method was developed to manufacture amorphous formulations of poorly soluble compounds that cannot be processed with existing methods such as spray drying and melt extrusion. The manufacturing process and the characterization of the resulting amorphous dispersion are presented via examples of two research compounds. The novel process is utilized N,N-dimethylacetamide (DMA) to dissolve the drug and the selected ionic polymer. This solution is then co-precipitated into aqueous medium. The solvent is extracted out by washing and the co-precipitated material is isolated by filtration followed by drying. The dried material is referred to as microprecipitated bulk powder (MBP). The amorphous form prepared using this method not only provides excellent in vitro and in vivo performance but also showed excellent stability. The stabilization of amorphous dispersion is attributed to the high T(g), ionic nature of the polymer that help to stabilize the amorphous form by possible ionic interactions, and/or due to the insolubility of polymer in water. In addition to being an alternate technology for amorphous formulation of difficult compounds, MBP technology provides advantages with respect to stability, density and downstream processing.


Journal of Pharmaceutical Sciences | 2012

A Method to Predict the Equilibrium Solubility of Drugs in Solid Polymers near Room Temperature Using Thermal Analysis

Robert A. Bellantone; Piyush Patel; Harpreet K. Sandhu; Duk Soon Choi; Dharmendra Singhal; Hitesh Chokshi; A. Waseem Malick; Navnit Shah

A method is presented for determining the equilibrium solubility of a drug in a solid polymer at or near room temperature, which represents a typical storage temperature. The method is based on a thermodynamic model to calculate the Gibbs energy change ΔG(SS) associated with forming a binary drug-polymer solid solution from the unmixed polymer and solid drug. The model includes contributions from heat capacity differences between the solid solution and the corresponding unmixed components, breaking up of the solid drug structure, and drug-polymer mixing. Calculation of ΔG(SS) from thermal analysis data is demonstrated, and it is shown that minima of plots of ΔG(SS) versus the dissolved drug concentration represent the equilibrium drug solubility in the polymer. Solid solutions were produced for drug-polymer systems (griseofulvin, indomethacin, itraconazole; PVP K30, Eudragit L100, Eudragit E100) in drug weight fractions up to ∼25%. At 25°C, it was seen that heat capacity effects were important in determining the drug solubility. It was concluded that drug solubilities in solid polymers can be determined using thermal analysis, and must include heat capacity effects when evaluated near room temperature.


Archive | 2012

Structured Development Approach for Amorphous Systems

Navnit Shah; Harpreet K. Sandhu; Duk Soon Choi; Oskar Kalb; Susanne Page; Nicole Wyttenbach

A structured development approach is presented to guide the development of stable and commercially viable polymer based amorphous formulations. The proposed approach should not only enable the delivery of poorly soluble drugs but also help to reduce the API needs, reduce in vivo screening, minimize risks for late-stage development, and should ensure consistent quality. During initial assessment, a guided evaluation of the physicochemical properties of the API helps to assess the degree of difficulty for the development. A range of tests including in silico evaluation, high-throughput screening assays, and miniaturized screening tools provide a road map for selecting the appropriate polymer, drug loading, and suitable manufacturing process. A dedicated section provides a review of the characterization tools to assess and quantify the crystallinity, understanding the phase behavior of amorphous solid dispersions, and designing the in vitro dissolution methods. Finally, a reference chart is provided that summarizes the key concepts proposed as part of the structured development approach that can serve as a blueprint for the development of amorphous formulations. The current authors would like to thank and acknowledge the significant contribution of the previous authors of this chapter from the first edition. This current second edition chapter is a revision and update of the original authors’ work.


International Journal of Pharmaceutics | 2013

Highly efficient miniaturized coprecipitation screening (MiCoS) for amorphous solid dispersion formulation development

Qingyan Hu; Duk Soon Choi; Hitesh Chokshi; Navnit Shah; Harpreet K. Sandhu

Microprecipitated bulk powder (MBP) is a novel solid dispersion technology to manufacture amorphous formulations of poorly soluble compounds that cannot be processed by spray drying or melt extrusion. An efficient high-throughput screening method has been developed to aid the selection of polymer type, drug loading and antisolvent to solvent ratio for MBP formulation development. With a 96-well platform, the miniaturized coprecipitation screening (MiCoS) includes mixing of drug and polymer in dimethylacetamide, controlled precipitation to generate MBP, filtration/washing, drying and high throughput characterization. The integrated MiCoS approach has been demonstrated with a model compound, glybenclamide. Based on the solid state stability and kinetic solubility of the MBP, hydroxypropylmethylcellulose acetate succinate polymer with 40% or lower drug loading, and antisolvent (0.01 N HCl) to solvent (dimethylacetamide) ratio of 5:1 or higher were selected to make glybenclamide MBP. MiCoS can be applied to both early and late stage formulation processing. In early stage research programs, the system can be used to enable efficacy, pharmacokinetics or mini-toxicology studies for poorly water soluble molecules using minimal amount of drug substance (2-10mg). In late stage development programs, MiCoS can be used to optimize MBP formulation by expanding the experimental design space to include additional formulation variants.


Journal of Pharmaceutical Sciences | 2013

Determination of Drug-Polymer Binding Constants by Affinity Capillary Electrophoresis for Aryl Propionic Acid Derivatives and Related Compounds

Zhongjiang Jia; Duk Soon Choi; Hitesh Chokshi

The binding constants (K(b)s) of 17 aryl propionic acid derivatives (APADs) and related compounds with polyvinylpyrrolidone (PVP K30) and vinylpyrrolidone-vinyl acetate copolymer (Kollidon VA64) in aqueous media were determined by affinity capillary electrophoreses (ACE). The K(b)s of APAD to polymers increase with octanol-water partition coefficients of the compounds. Kollidon VA64 is a stronger binder than PVP K30 to APAD compounds. The K(b)s are greater at pH 4 than at pH 9. Both hydrophobic interaction and hydrogen bonding may be involved. However, hydrophobic interaction appears to be dominant. The ACE method is simple and fast, which could be used to study drug-polymer interaction in aqueous media.


Journal of Pharmaceutical Innovation | 2013

Evaluation on the Drug–Polymer Mixing Status in Amorphous Solid Dispersions at the Early Stage Formulation and Process Development

Hua (May) Ma; Duk Soon Choi; Yu-E Zhang; Hung Tian; Navnit Shah; Hitesh Chokshi

Drug and polymer mixing status in amorphous solid dispersions, an important aspect with regard to the physical stability and in vivo performance of such systems, was evaluated in this report with two case studies. In the first case study, the mixing between the drug and the polymer in an amorphous solid dispersion was assessed at both particulate and bulk levels to ensure that a homogeneous solid dispersion was obtained. In the second study, drug–polymer distribution evaluation in amorphous solid dispersions facilitated the selection of an optimal drug loading and a robust manufacturing process at the early stage of formulation development. Through these two case studies, it is suggested that establishing a multi-faceted characterization approach for amorphous solid dispersions is key to achieve a better understanding of these complex systems and successful delivery of stable and efficacious amorphous formulations.


Bioorganic & Medicinal Chemistry Letters | 2013

Identification of N-acyl 4-(5-pyrimidine-2,4-dionyl)phenylalanine derivatives and their orally active prodrug esters as dual-acting alpha4-beta1 and alpha4-beta7 receptor antagonists.

Achyutharao Sidduri; Jefferson Wright Tilley; Jianping Lou; Nadine Tare; Gary Cavallo; Karl Frank; Anjula Pamidimukkala; Duk Soon Choi; Louise Gerber; Aruna Railkar; Louis M. Renzetti

N-Acyl 4-(5-pyrimidine-2,4-dionyl)phenylalanine derivatives of type 4 were designed to replace the 2,6-dichlorobenzoylamine portion of compound 1 in order to identify novel compounds with improved potency against α4-integrins. Several derivatives were identified as very potent dual-acting α4-integrin, α4β1 and α4β7 antagonists. Investigation of a limited number of prodrug esters led to the discovery of the ethyl ester prodrug 42, which demonstrated good intestinal fluid stability and good permeability. Despite low solubility, 42 gave acceptable blood levels of 30 when dosed orally in non-human primates. Additionally, 42 had an overall excellent profile and was selected for clinical trials. Investigation of N-acyl 4-(5-pyrimidine-2,4-dionyl)phenylalanine derivatives led to the discovery of several very potent dual-acting α4-integrin antagonists. Ethyl ester prodrug 42 advanced to human clinical trials based on the excellent intestinal fluid stability, good permeability and superior efficacy in non-human primates.

Collaboration


Dive into the Duk Soon Choi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge