Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dumitru Oancea is active.

Publication


Featured researches published by Dumitru Oancea.


Journal of Hazardous Materials | 2009

Explosion characteristics of LPG-air mixtures in closed vessels.

Domnina Razus; Venera Brinzea; Maria Mitu; Dumitru Oancea

The experimental study of explosive combustion of LPG (liquefied petroleum gas)-air mixtures at ambient initial temperature was performed in two closed vessels with central ignition, at various total initial pressures within 0.3-1.3bar and various fuel/air ratios, within the flammability limits. The transient pressure-time records were used to determine several explosion characteristics of LPG-air: the peak explosion pressure, the explosion time (the time necessary to reach the peak pressure), the maximum rate of pressure rise and the severity factor. All explosion parameters are strongly dependent on initial pressure of fuel-air mixture and on fuel/air ratio. The explosion characteristics of LPG-air mixtures are discussed in comparison with data referring to the main components of LPG: propane and butane, obtained in identical conditions.


Journal of Hazardous Materials | 2010

Temperature and pressure influence on explosion pressures of closed vessel propane-air deflagrations.

Domnina Razus; Venera Brinzea; Maria Mitu; Dumitru Oancea

An experimental study on pressure evolution during closed vessel explosions of propane-air mixtures was performed, for systems with various initial concentrations and pressures ([C(3)H(8)]=2.50-6.20 vol.%, p(0)=0.3-1.2 bar). The explosion pressures and explosion times were measured in a spherical vessel (Phi=10 cm), at various initial temperatures (T(0)=298-423 K) and in a cylindrical vessel (Phi=10 cm; h=15 cm), at ambient initial temperature. The experimental values of explosion pressures are examined against literature values and compared to adiabatic explosion pressures, computed by assuming chemical equilibrium within the flame front. The influence of initial pressure, initial temperature and fuel concentration on explosion pressures and explosion times are discussed. At constant temperature and fuel/oxygen ratio, the explosion pressures are linear functions of total initial pressure, as reported for other fuel-air mixtures. At constant initial pressure and composition, both the measured and calculated (adiabatic) explosion pressures are linear functions of reciprocal value of initial temperature. Such correlations are extremely useful for predicting the explosion pressures of flammable mixtures at elevated temperatures and/or pressures, when direct measurements are not available.


Journal of Hazardous Materials | 2011

Temperature and pressure influence on maximum rates of pressure rise during explosions of propane-air mixtures in a spherical vessel.

Domnina Razus; Venera Brinzea; Maria Mitu; Codina Movileanu; Dumitru Oancea

The maximum rates of pressure rise during closed vessel explosions of propane-air mixtures are reported, for systems with various initial concentrations, pressures and temperatures ([C(3)H(8)]=2.50-6.20 vol.%, p(0)=0.3-1.3 bar; T(0)=298-423 K). Experiments were performed in a spherical vessel (Φ=10 cm) with central ignition. The deflagration (severity) index K(G), calculated from experimental values of maximum rates of pressure rise is examined against the adiabatic deflagration index, K(G, ad), computed from normal burning velocities and peak explosion pressures. At constant temperature and fuel/oxygen ratio, both the maximum rates of pressure rise and the deflagration indices are linear functions of total initial pressure, as reported for other fuel-air mixtures. At constant initial pressure and composition, the maximum rates of pressure rise and deflagration indices are slightly influenced by the initial temperature; some influence of the initial temperature on maximum rates of pressure rise is observed only for propane-air mixtures far from stoichiometric composition. The differentiated temperature influence on the normal burning velocities and the peak explosion pressures might explain this behaviour.


Bioprocess and Biosystems Engineering | 2008

Oxidase-peroxidase reaction: kinetics of peroxidase-catalysed oxidation of 2-aminophenol

Mihaela Puiu; Adina Răducan; Irina Babaligea; Dumitru Oancea

Possible reaction pathways that may lead to horseradish peroxidase inactivation during the aerobic oxidation of 2-aminophenol were investigated using extended kinetic curves. A kinetic model involving the formation of a low-reactive species, Compound III, was proposed and several rate constants were calculated using an optimisation computing program. Sensitivity analysis allowed to conclude that both oxidase and peroxidase cycles occur in 2-aminophenol oxidation.


Journal of Loss Prevention in The Process Industries | 2003

High voltage and break spark ignition of propylene/air mixtures at various initial pressures

Dumitru Oancea; Domnina Razus; Valentin Munteanu; Irina Cojocea

Abstract The original break spark test apparatus for intrinsically safe circuits was modified to allow the measurements of minimum ignition currents (MICs) at different initial pressures between 20 and 120 kPa. The MICs of different propylene/air mixtures at ambient temperature and at both atmospheric and sub-atmospheric pressures were measured. The corresponding minimum ignition energies (MIEs) using break sparks were calculated and compared with those derived from MIE/quenching distance correlations using high voltage sparks between flanged electrodes.


Central European Journal of Chemistry | 2008

Influence of surfactants on the fading of malachite green

Adina Raducan; Alexandra Olteanu; Mihaela Puiu; Dumitru Oancea

The kinetics of the reaction between malachite green (MG) and sodium hydroxide (MG fading) was studied using a spectrophotometric method in the presence of two cationic surfactants, cetyl-benzyl-dimethyl-ammonium chloride (CBDAC) and hexadecyl-trimethylammonium bromide (HTAB) and one anionic surfactant, sodium dodecyl sulphate (SDS) at concentrations below and above critical micellar concentrations. The cationic surfactants have a catalytic effect, while the anionic surfactant has an inhibitory effect on the reaction. A kinetic model describing the influence of surfactant on reaction rate was developed. The results are discussed on the basis of electrostatic and hydrophobic interactions between the kinetic micelles and malachite green.


Biophysical Chemistry | 2008

Estimation of the overall kinetic parameters of enzyme inactivation using an isoconversional method.

Dumitru Oancea; Alexandrina Stuparu; Madalina Nita; Mihaela Puiu; Adina Raducan

An isoconversional method is proposed in order to calculate the kinetic parameters of enzyme inactivation. The method provides an efficient and low-cost procedure to describe both operational and thermal inactivation. Unlike the ordinary kinetic assays performed at constant enzyme concentration and at various substrate concentrations, the isoconversional method requires several extended kinetic curves for constant initial substrate concentration and different enzyme concentrations. The procedure was tested and validated using simulated data obtained for several kinetic models frequently discussed in the literature. After the validation, the isoconversional method was used for the investigation of the thermoinactivation of urease during urea hydrolysis in self buffered medium and the operational inactivation (destructive oxidation by excess peroxide) of catalase at high concentration of hydrogen peroxide. The results showed that the isoconversional method gives good results of global inactivation constant for both simple and more complex models.


Journal of Hazardous Materials | 2017

Inert gas influence on the laminar burning velocity of methane-air mixtures

Maria Mitu; Venera Giurcan; Domnina Razus; Dumitru Oancea

Flame propagation was studied in methane-air-inert (He, Ar, N2 or CO2) mixtures with various initial pressures and compositions using pressure-time records obtained in a spherical vessel with central ignition. The laminar burning velocities of CH4-air and CH4-air-inert mixtures obtained from experimental p(t) records of the early stage of combustion were compared with literature data and with those obtained from numerical modeling of 1D flames. The overall reaction orders of methane oxidation were determined from the baric coefficients of the laminar burning velocities determined from power-law equations. For all mixtures, the adiabatic flames temperatures were computed, assuming that the chemical equilibrium is reached in the flame front. The overall activation energy for the propagation stage of the combustion process was determined from the temperature dependence of the laminar burning velocity.


Bioprocess and Biosystems Engineering | 2012

Kinetics of hydrogen peroxide decomposition by catalase: hydroxylic solvent effects

Adina Raducan; Anca Ruxandra Cantemir; Mihaela Puiu; Dumitru Oancea

The effect of water–alcohol (methanol, ethanol, propan-1-ol, propan-2-ol, ethane-1,2-diol and propane-1,2,3-triol) binary mixtures on the kinetics of hydrogen peroxide decomposition in the presence of bovine liver catalase is investigated. In all solvents, the activity of catalase is smaller than in water. The results are discussed on the basis of a simple kinetic model. The kinetic constants for product formation through enzyme–substrate complex decomposition and for inactivation of catalase are estimated. The organic solvents are characterized by several physical properties: dielectric constant (D), hydrophobicity (log P), concentration of hydroxyl groups ([OH]), polarizability (α), Kamlet-Taft parameter (β) and Kosower parameter (Z). The relationships between the initial rate, kinetic constants and medium properties are analyzed by linear and multiple linear regression.


Central European Journal of Chemistry | 2014

Numerical study of the laminar flame propagation in ethane-air mixtures

Venera Giurcan; Domnina Razus; Maria Mitu; Dumitru Oancea

AbstractThe structure of premixed free one-dimensional laminar ethane-air flames was investigated by means of numerical simulations performed with a detailed mechanism (GRI-Mech version 3.0) by means of COSILAB package. The work provides data on ethane-air mixtures with a wide range of concentrations ([C2H6] = 3.0–9.5 vol.%) at initial temperatures between 300 and 550 K and initial pressures between 1 and 10 bar. The simulations deliver the laminar burning velocities and the profiles of temperature, chemical species concentrations and heat release rate across the flame front. The predicted burning velocities match well the burning velocities measured in various conditions, reported in literature. The influence of initial concentration, pressure and temperature of ethane-air mixtures on maximum flame temperature, heat release rate, flame thickness and peak concentrations of main reaction intermediates is examined and discussed.

Collaboration


Dive into the Dumitru Oancea's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mihaela Puiu

University of Bucharest

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge