Duncan C. Krause
University of Georgia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Duncan C. Krause.
Molecular Microbiology | 1996
Duncan C. Krause
Mycoplasma pneumoniae is the leading cause of pneumonia in older children and young adults. Mycoplasma adherence to the respiratory epithelium (cytadherence) is required for colonization and pathogenesis. Although considered to be among the smallest and simplest known prokaryotes, this cell‐wall‐less bacterium possesses a highly differentiated terminal structure that is thought to be functional in mycoplasma cell division, gliding motility, and cytadherence. Mutant analysis has identified mycoplasma proteins associated with cytadherence, and revealed novel regulatory features. Ultrastructural and biochemical studies have established the subcellular location and interaction of key components, several of which are phosphorylated by ATP‐dependent kinase(s) in a manner that is responsive to changing nutritional conditions. This review summarizes recent progress in defining the composition, organization and regulation of the attachment organelle. What emerges is a picture of M. pneumoniae cytadherence as a multifactorial process that extends well beyond adhesin‐receptor recognition.
Molecular Microbiology | 2004
Duncan C. Krause; Mitchell F. Balish
Mycoplasma pneumoniae is a minimal microbe with respect to cell envelope composition, biosynthetic and regulatory capabilities and genome size, yet it possesses a remarkably complex, multifunctional terminal organelle. This membrane‐bound extension of the mycoplasma cell is defined by the presence of an electron‐dense core that appears as paired, parallel bars oriented longitudinally and enlarging at the distal end to form a terminal button. Most non‐cytadhering mutants of M. pneumoniae isolated to date exhibit defects in the architecture of the terminal organelle. Detailed characterization of those mutants has revealed the identities of many component proteins of the terminal organelle as well as the likely order in which some of those components are required. Additional questions regarding the composition of the electron‐dense core, the means by which the terminal organelle is duplicated during cell division and the manner in which this process is regulated remain to be answered. Thus, it seems that there is much to be learned about cellular engineering and spatial regulation in these ‘simple’ cell wall‐less bacteria.
Trends in Microbiology | 1998
Duncan C. Krause
Mycoplasma pneumoniae has no cell wall but possesses a complex terminal structure that is required for polar localization of adhesins and is thought to participate in cell division. Several protein components of this structure have been identified by analysis of non-cytadhering mutants. Genetic manipulation of mycoplasmas now allows elucidation of the assembly and regulation of the terminal organelle.
Proceedings of the National Academy of Sciences of the United States of America | 2006
Benjamin M. Hasselbring; Jarrat L. Jordan; Robert W. Krause; Duncan C. Krause
Mycoplasmas are cell wall-less bacteria considered among the smallest and simplest prokaryotes known, and yet several species including Mycoplasma pneumoniae have a remarkably complex cellular organization highlighted by the presence of a differentiated terminal organelle, a membrane-bound cell extension distinguished by an electron-dense core. Adhesin proteins localize specifically to the terminal organelle, which is also the leading end in gliding motility. Duplication of the terminal organelle is thought to precede cell division, but neither the mechanism of its duplication nor its role in this process is understood. Here we used fluorescent protein fusions and time-lapse digital imaging to study terminal organelle formation in detail in growing cultures of M. pneumoniae. Individual cells ceased gliding as a new terminal organelle formed adjacent to an existing structure, which then migrated away from the transiently stationary nascent structure. Multiple terminal organelles often formed before cytokinesis was observed. The separation of terminal organelles was impaired in a nonmotile mutant, indicating a requirement for gliding in normal cell division. Examination of cells expressing two different fluorescent protein fusions concurrently established their relative order of appearance, and changes in the fluorescence pattern over time suggested that nascent terminal organelles originated de novo rather than from an existing structure. In summary, spatial and temporal analysis of terminal organelle formation has yielded insights into the nature of M. pneumoniae cell division and the role of gliding motility in that process.
PLOS ONE | 2010
Suzanne L. Hennigan; Jeremy D. Driskell; Richard A. Dluhy; Yiping Zhao; Ralph A. Tripp; Ken B. Waites; Duncan C. Krause
The prokaryote Mycoplasma pneumoniae is a major cause of respiratory disease in humans, accounting for 20% of all community-acquired pneumonia and the leading cause of pneumonia in older children and young adults. The limitations of existing options for mycoplasma diagnosis highlight a critical need for a new detection platform with high sensitivity, specificity, and expediency. Here we evaluated silver nanorod arrays (NA) as a biosensing platform for detection and differentiation of M. pneumoniae in culture and in spiked and true clinical throat swab samples by surface-enhanced Raman spectroscopy (SERS). Three M. pneumoniae strains were reproducibly differentiated by NA-SERS with 95%–100% specificity and 94–100% sensitivity, and with a lower detection limit exceeding standard PCR. Analysis of throat swab samples spiked with M. pneumoniae yielded detection in a complex, clinically relevant background with >90% accuracy and high sensitivity. In addition, NA-SERS correctly classified with >97% accuracy, ten true clinical throat swab samples previously established by real-time PCR and culture to be positive or negative for M. pneumoniae. Our findings suggest that the unique biochemical specificity of Raman spectroscopy, combined with reproducible spectral enhancement by silver NA, holds great promise as a superior platform for rapid and sensitive detection and identification of M. pneumoniae, with potential for point-of-care application.
IEEE Sensors Journal | 2008
Jeremy D. Driskell; Saratchandra Shanmukh; Yongjun Liu; Sue Hennigan; Les P. Jones; Yiping Zhao; Richard A. Dluhy; Duncan C. Krause; Ralph A. Tripp
The aligned silver nanorod array substrates prepared by the oblique angle deposition method are capable of providing extremely high enhancement factors (~5times108) at near-infrared wavelengths (785 nm) for a standard reporter molecule 1,2 trans-(bis)pyridyl-ethene (BPE). The enhancement factor depends strongly on the length of the Ag nanorods, the substrate coating, the polarization of the excitation light, as well as the incident angle. With the current optimum structure, we demonstrate that the detection limit for BPE can be lower than 0.1 fM. We also show that this surface-enhanced Raman spectroscopy (SERS)-active substrate can serve as a sensor to detect and differentiate the molecular fingerprints of several important human pathogens, particularly, respiratory syncytial virus, human immunodeficiency virus, rotavirus, and the bacterium Mycoplasma pneumoniae. Utilizing chemometric methods, SERS nanorod array data can be used to sensitively detect and to classify viruses at the strain level. These results suggest that the SERS Ag nanorod array is a powerful technique for direct, rapid, and sensitive detection of infectious agents.
Infection and Immunity | 2007
Jarrat L. Jordan; How-Yi Chang; Mitchell F. Balish; Lynley S. Holt; Stephanie R. Bose; Benjamin M. Hasselbring; Robert H. Waldo; Thomas M. Krunkosky; Duncan C. Krause
ABSTRACT Mycoplasma pneumoniae protein P200 was localized to the terminal organelle, which functions in cytadherence and gliding motility. The loss of P200 had no impact on binding to erythrocytes and A549 cells but resulted in impaired gliding motility and colonization of differentiated bronchial epithelium. Thus, gliding may be necessary to overcome mucociliary clearance.
Molecular Microbiology | 2007
Benjamin M. Hasselbring; Duncan C. Krause
The cell wall‐less prokaryote Mycoplasma pneumoniae approaches the minimal requirements for a cell yet produces a complex terminal organelle that mediates cytadherence and gliding motility. Here we explored the molecular nature of the M. pneumoniae gliding machinery, utilizing fluorescent protein fusions and digital microcinematography to characterize gliding‐altered mutants having transposon insertions in MPN311, encoding the cytoskeletal protein P41. Disruption of MPN311 resulted in loss of P41 and P24, the downstream gene product. Gliding ceases in wild‐type M. pneumoniae during terminal organelle development, which occurs at the cell poles adjacent to an existing structure. In contrast, terminal organelle development in MPN311 mutants did not necessarily coincide with gliding cessation, and new terminal organelles frequently formed at lateral sites. Furthermore, new terminal organelles exhibited gliding capacity quickly, unlike wild‐type M. pneumoniae. P41 and P24 localize at the base of the terminal organelle; in their absence this structure detached from the cell body of motile and dividing cells but retained gliding capacity and thus constitutes the gliding apparatus. Recombinant wild‐type P41 restored cell integrity, establishing a role for this protein in anchoring the terminal organelle to the cell body.
Journal of Bacteriology | 2006
Benjamin M. Hasselbring; Clinton A. Page; Edward S. Sheppard; Duncan C. Krause
The wall-less prokaryote Mycoplasma pneumoniae, a common cause of chronic respiratory tract infections in humans, is considered to be among the smallest and simplest known cells capable of self-replication, yet it has a complex architecture with a novel cytoskeleton and a differentiated terminal organelle that function in adherence, cell division, and gliding motility. Recent findings have begun to elucidate the hierarchy of protein interactions required for terminal organelle assembly, but the engineering of its gliding machinery is largely unknown. In the current study, we assessed gliding in cytadherence mutants lacking terminal organelle proteins B, C, P1, and HMW1. Furthermore, we screened over 3,500 M. pneumoniae transposon mutants individually to identify genes associated with gliding but dispensable for cytadherence. Forty-seven transformants having motility defects were characterized further, with transposon insertions mapping to 32 different open reading frames widely distributed throughout the M. pneumoniae genome; 30 of these were dispensable for cytadherence. We confirmed the clonality of selected transformants by Southern blot hybridization and PCR analysis and characterized satellite growth and gliding by microcinematography. For some mutants, satellite growth was absent or developed more slowly than that of the wild type. Others produced lawn-like growth largely devoid of typical microcolonies, while still others had a dull, asymmetrical leading edge or a filamentous appearance of colony spreading. All mutants exhibited substantially reduced gliding velocities and/or frequencies. These findings significantly expand our understanding of the complexity of M. pneumoniae gliding and the identity of possible elements of the gliding machinery, providing a foundation for a detailed analysis of the engineering and regulation of motility in this unusual prokaryote.
Journal of Bacteriology | 2005
Benjamin M. Hasselbring; Jarrat L. Jordan; Duncan C. Krause
The cell-wall-less prokaryote Mycoplasma pneumoniae, long considered among the smallest and simplest cells capable of self-replication, has a distinct cellular polarity characterized by the presence of a differentiated terminal organelle which functions in adherence to human respiratory epithelium, gliding motility, and cell division. Characterization of hemadsorption (HA)-negative mutants has resulted in identification of several terminal organelle proteins, including P30, the loss of which results in developmental defects and decreased adherence to host cells, but their impact on M. pneumoniae gliding has not been investigated. Here we examined the contribution of P30 to gliding motility on the basis of satellite growth and cell gliding velocity and frequency. M. pneumoniae HA mutant II-3 lacking P30 was nonmotile, but HA mutant II-7 producing a truncated P30 was motile, albeit at a velocity 50-fold less than that of the wild type. HA-positive revertant II-3R producing an altered P30 was unexpectedly not fully wild type with respect to gliding. Complementation of mutant II-3 with recombinant wild-type and mutant alleles confirmed the correlation between gliding defect and loss or alteration in P30. Surprisingly, fusion of yellow fluorescent protein to the C terminus of P30 had little impact on cell gliding velocity and significantly enhanced HA. Finally, while quantitative examination of HA revealed clear distinctions among these mutant strains, gliding defects did not correlate strictly with the HA phenotype, and all strains attached to glass at wild-type levels. Taken together, these findings suggest a role for P30 in gliding motility that is distinct from its requirement in adherence.
Collaboration
Dive into the Duncan C. Krause's collaboration.
University of Texas Health Science Center at San Antonio
View shared research outputs