Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Duncan Hiscock is active.

Publication


Featured researches published by Duncan Hiscock.


The Journal of Nuclear Medicine | 2013

Three Methods for 18F Labeling of the HER2-Binding Affibody Molecule ZHER2:2891 Including Preclinical Assessment

Matthias Glaser; Peter Iveson; Susan Hoppmann; Bård Indrevoll; Anthony Wilson; Joseph Arukwe; Antonios Danikas; Rajiv Bhalla; Duncan Hiscock

Human epidermal growth factor receptor (HER2)–targeted Affibody molecules radiolabeled with 18F allow the noninvasive assessment of HER2 status in vivo through PET imaging. Such agents have the potential to improve patient management by selecting individuals for HER2-targeted therapies and allowing therapy monitoring. The aim of this study was to assess different 18F radiolabeling strategies of the HER2-specific Affibody molecule ZHER2:2891, preclinically determine the biologic efficacy of the different radiolabel molecules, and select a preferred radiolabeling strategy to progress for automated manufacture. Methods: Cysteine was added to the C terminus of the Affibody molecule for the coupling of maleimide linkers, and 3 radiolabeling strategies were assessed: silicon-fluoride acceptor approach (18F-SiFA), 18F-AlF-NOTA, and 4-18F-fluorobenzaldehyde (18F-FBA). The biodistributions of the radiolabeled Affibody molecules were then determined in naïve CD-1 nude mice, and tumor targeting was assessed in CD-1 nude mice bearing high-HER2-expressing NCI-N87 tumors and low-HER2-expressing A431 tumors. The 111In-ABY-025 compound, which has demonstrable clinical utility, served as a reference tracer. Results: The non–decay-corrected radiochemical yields based on starting 18F-fluoride using the 18F-FBA, 18F-SiFA, and 18F-AlF-NOTA methods were 13% ± 3% (n = 5), 38% ± 2% (n = 3), and 11% ± 4% (n = 6), respectively. In naïve mice, both the 18F-AlF-NOTA-ZHER2:2891 and the 111In-ABY-025 compounds showed a significant kidney retention (70.3 ± 1.3 and 73.8 ± 3.0 percentage injected dose [%ID], respectively, at 90 min after injection), which was not observed for 18F-FBA-ZHER2:2891 or 18F-SiFA-ZHER2:2891 (4.8 ± 0.6 and 10.1 ± 0.7 %ID, respectively, at 90 min). The 18F-SiFA-ZHER2:2891 conjugate was compromised by increasing bone retention over time (5.3 ± 1.0 %ID/g at 90 min after injection), indicating defluorination. All the radiolabeled Affibody molecules assessed showed significantly higher retention in NCI-N87 tumors than A431 tumors at all time points (P < 0.05), and PET/CT imaging of 18F-FBA-ZHER2:2891 in a dual NCI-N87/A431 xenograft model demonstrated high tumor-to-background contrast for NCI-N87 tumors. Conclusion: The HER2 Affibody molecule ZHER2:2891 has been site-selectively radiolabeled by three 18F conjugation methods. Preliminary biologic data have identified 18F-FBA-ZHER2:2891 (also known as GE226) as a favored candidate for further development and radiochemistry automation.


Neuropsychiatric Disease and Treatment | 2017

BIOMARKERS FOR DEPRESSION

Peter S. Hanson; Duncan Hiscock; Christopher Morris; Alan Thomas

A plethora of research has implicated hundreds of putative biomarkers for depression, but has not yet fully elucidated their roles in depressive illness or established what is abnormal in which patients and how biologic information can be used to enhance diagnosis, treatment and prognosis. This lack of progress is partially due to the nature and heterogeneity of depression, in conjunction with methodological heterogeneity within the research literature and the large array of biomarkers with potential, the expression of which often varies according to many factors. We review the available literature, which indicates that markers involved in inflammatory, neurotrophic and metabolic processes, as well as neurotransmitter and neuroendocrine system components, represent highly promising candidates. These may be measured through genetic and epigenetic, transcriptomic and proteomic, metabolomic and neuroimaging assessments. The use of novel approaches and systematic research programs is now required to determine whether, and which, biomarkers can be used to predict response to treatment, stratify patients to specific treatments and develop targets for new interventions. We conclude that there is much promise for reducing the burden of depression through further developing and expanding these research avenues.


Clinical Cancer Research | 2014

Positron Emission Tomography Imaging with 18F-Labeled ZHER2:2891 Affibody for Detection of HER2 Expression and Pharmacodynamic Response to HER2-Modulating Therapies

Sebastian Trousil; Susan Hoppmann; Quang-Dé Nguyen; Maciej Kaliszczak; Giampaolo Tomasi; Peter Iveson; Duncan Hiscock; Eric O. Aboagye

Purpose: Expression of HER2 has profound implications on treatment strategies in various types of cancer. We investigated the specificity of radiolabeled HER2-targeting ZHER2:2891 Affibody, [18F]GE-226, for positron emission tomography (PET) imaging. Experimental Design: Intrinsic cellular [18F]GE-226 uptake and tumor-specific tracer binding were assessed in cells and xenografts with and without drug treatment. Specificity was further determined by comparing tumor localization of a fluorescently labeled analogue with DAKO HercepTest. Results: [18F]GE-226 uptake was 11- to 67-fold higher in 10 HER2-positive versus HER2-negative cell lines in vitro independent of lineage. Uptake in HER2-positive xenografts was rapid with net irreversible binding kinetics making possible the distinction of HER2-negative [MCF7 and MCF7-p95HER2: NUV60 (%ID/mL) 6.1 ± 0.7; Ki (mL/cm3/min) 0.0069 ± 0.0014] from HER2-positive tumors (NUV60 and Ki: MCF7-HER2, 10.9 ± 1.5 and 0.015 ± 0.0035; MDA-MB-361, 18.2 ± 3.4 and 0.025 ± 0.0052; SKOV-3, 18.7 ± 2.4 and 0.036 ± 0.0065) within 1 hour. Tumor uptake correlated with HER2 expression determined by ELISA (r2 = 0.78), and a fluorophore-labeled tracer analogue colocalized with HER2 expression. Tracer uptake was not influenced by short-term or continuous treatment with trastuzumab in keeping with differential epitope binding, but reflected HER2 degradation by short-term NVP-AUY922 treatment in SKOV-3 xenografts (NUV60: 13.5 ± 2.1 %ID/mL vs. 9.0 ± 0.9 %ID/mL for vehicle or drug, respectively). Conclusions: [18F]GE-226 binds with high specificity to HER2 independent of cell lineage. The tracer has potential utility for HER2 detection, irrespective of prior trastuzumab treatment, and to discern HSP90 inhibitor-mediated HER2 degradation. Clin Cancer Res; 20(6); 1632–43. ©2014 AACR.


Molecular Cancer Therapeutics | 2013

[18F]-FLT Positron Emission Tomography can be used to image the response of sensitive tumors to PI3-Kinase inhibition with the novel agent GDC-0941.

Christopher Cawthorne; Natalie Burrows; Roben G. Gieling; Christopher J. Morrow; Duncan Forster; Jamil Gregory; Marc Radigois; Alison Smigova; Muhammad Babur; Kathryn Simpson; Cassandra L Hodgkinson; Gavin Brown; Adam McMahon; Caroline Dive; Duncan Hiscock; Ian Wilson; Kaye J. Williams

The phosphoinositide 3-kinase (PI3K) pathway is deregulated in a range of cancers, and several targeted inhibitors are entering the clinic. This study aimed to investigate whether the positron emission tomography tracer 3′-deoxy-3′-[18F]fluorothymidine ([18F]-FLT) is suitable to mark the effect of the novel PI3K inhibitor GDC-0941, which has entered phase II clinical trial. CBA nude mice bearing U87 glioma and HCT116 colorectal xenografts were imaged at baseline with [18F]-FLT and at acute (18 hours) and chronic (186 hours) time points after twice-daily administration of GDC-0941 (50 mg/kg) or vehicle. Tumor uptake normalized to blood pool was calculated, and tissue was analyzed at sacrifice for PI3K pathway inhibition and thymidine kinase (TK1) expression. Uptake of [18F]-FLT was also assessed in tumors inducibly overexpressing a dominant-negative form of the PI3K p85 subunit p85α, as well as HCT116 liver metastases after GDC-0941 therapy. GDC-0941 treatment induced tumor stasis in U87 xenografts, whereas inhibition of HCT116 tumors was more variable. Tumor uptake of [18F]-FLT was significantly reduced following GDC-0941 dosing in responsive tumors at the acute time point and correlated with pharmacodynamic markers of PI3K signaling inhibition and significant reduction in TK1 expression in U87, but not HCT116, tumors. Reduction of PI3K signaling via expression of Δp85α significantly reduced tumor growth and [18F]-FLT uptake, as did treatment of HCT116 liver metastases with GDC-0941. These results indicate that [18F]-FLT is a strong candidate for the noninvasive measurement of GDC-0941 action. Mol Cancer Ther; 12(5); 819–28. ©2013 AACR.


Cancer Research | 2012

Abstract 4294: GE152: In vivo detection of tumor apoptosis as a tool for assessment of therapeutic efficacy

Duncan Hiscock; Graeme McRobbie; Rochelle Lear; Antonios Danikas; Chris Cawthorne; Kathryn Simpson; M. Zivanovic; Gavin Brown; A J Price; Kaye J. Williams; Caroline Dive

Proceedings: AACR 103rd Annual Meeting 2012‐‐ Mar 31‐Apr 4, 2012; Chicago, IL A major challenge in personalized healthcare is predicting how effective a drug treatment is. This is particularly the case in oncology, where there is a call for better therapy monitoring to maximize drug treatment effectiveness leading to improved patient survival and help reduce healthcare costs. GE152, a nuclear imaging agent under development at GE Healthcare, is being evaluated preclinically as a tool to assess therapeutic efficacy by detecting tumor apoptosis. GE152 is based on a 99mTechnetium radiolabelled peptide that shows nanomolar affinity for a specific cell death target, as demonstrated by studies using Biacore technology. Biodistribution using the murine lymphoma (EL4) tumour therapy model has shown increased tumor uptake and retention of GE152 following chemotherapy, with positive tumor:muscle and tumor:blood ratios. Correlation of tumor apoptosis levels (determined by caspase activity) with GE152 tumor retention suggest a trend of increasing agent retention with rising levels of apoptosis (GE152 retention in low apoptotic tumors is 4.9%ID/g; GE152 retention in high apoptotic tumors is 8.2%ID/g).Further validation of GE152 was carried out using an apoptosis-specific inducible cell death model whereby HT29 colorectal cancer cell xenografts engineered to inducibly express either a constitutively active form of caspase-3 (which causes synchronous cell death in vivo when exposed to doxycycline) or an inactive point mutant. GE152 demonstrated greater uptake in tumors undergoing apoptosis (3.6% ID/g) than in controls (1.2% ID/g), correlating with caspase activity levels (and subsequent apoptosis) as determined both enzymatically and by IHC and blood-borne biomarkers of cell death. These results are in agreement with preliminary preclinical imaging studies using SPECT/CT, where region of interest analysis has demonstrated increased post-therapy tumor retention of GE152. We are currently optimizing the performance of GE152 by assessing different radiolabelling precursors to improve imaging agent pharmacokinetics. In addition to the current 99mTechnetium-based approach, we are exploring 18F radiolabelling options that would allow expansion of the agents utility to PET imaging. Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 103rd Annual Meeting of the American Association for Cancer Research; 2012 Mar 31-Apr 4; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2012;72(8 Suppl):Abstract nr 4294. doi:1538-7445.AM2012-4294


The Journal of Nuclear Medicine | 2014

Reply: Al18F Labeling of Affibody Molecules

Matthias Glaser; Peter Iveson; Susan Hoppmann; Bård Indrevoll; Anthony Wilson; Joseph Arukwe; Antonios Danikas; Rajiv Bhalla; Duncan Hiscock

TO THE EDITOR: Glaser et al. recently described the labeling of F-ZHER2:2891-Cys-NOTA-(COOH)2-AlF (18F-12) (1) and compared it in vivo to the biodistribution of that Affibody (Affibody AB) with 18F attached to carbon and silicon, as well as an 111In-DOTA-Affibody. They reported that the Al18F-labeled Affibody had a similar biodistribution to the 111In-Affibody, as previously noted by Heskamp et al. (2), and also observed that the Al18F-labeled Affibody had high uptake and retention in the kidney (;80 percentage injected dose [%ID], like the 111In-Affibody). This is presumably because the small-sized Affibody is eliminated through the kidneys, where it is rapidly catabolized, with the resulting Al18F complex residualized in the renal tubules in the same manner as the 111In-DOTA complex (3). In contrast, when the carbonand silicon-labeled Affibody molecules are metabolized in the kidney, the 18F-labeled metabolites are eliminated from the kidney cells, greatly reducing renal uptake. Although this clearly serves as an advantage for this product, much like differences between radioiodinated and radiometal-labeled antibody fragments, it is important to emphasize that renal uptake of the Al18F-Affibody product is a property of the Affibody targeting agent and not the Al18F complex. Previous studies with our pretargeting peptide (4) and the Al18F-NOTA-pegylated arginine-glycineaspartic acid dimer (PRGD2) peptide (5) both showed excellent renal clearance in the mouse models, and the Al18F-NOTAPRGD2 peptide also had good renal clearance in humans (6). It should also be noted that the 18F-Affibody labeled through a carbon atom had high hepatobiliary clearance (40–50 %ID in the intestines), whereas the Al18F-labeled Affibody had low uptake in the intestines. The high hepatobiliary accretion might be considered at least as undesirable as the high renal retention, depending on the use of the agent. Glaser et al. also reported a 2-fold lower labeling yield for their Al18F-Affibody than the Al18F-labeling yield of a similar Affibody bearing the same NOTA ligand (11% vs. 21%), and this despite the fact that Heskamp et al. used a lower amount of the Affibody (2). Although we cannot discount the possibility that slight differences in the Affibody structure could have influenced the yields, we strongly suspect the yield differences are attributable to the lack of a co-solvent in the labeling procedure used by Glaser et al. Indeed, we have shown that the use of a co-solvent generally improves yields 2-fold (7). Thus, we believe it is important when comparing labeling technologies to attempt to optimize or normalize each procedure, or if not empirically assessed, to state the conditions that might have affected yields when this information has been published previously. Second, whereas the nonresidualizing 18F-linkage used by Glaser et al. provided lower renal uptake, there likely are other situations, such as in target cells with a more rapid metabolism, in which a residualizing form of 18F afforded by the AlF method would be preferred (8). DISCLOSURE


Molecular Cancer Therapeutics | 2013

Abstract B140: Positron emission tomography imaging of HER2 expression and pharmacodynamic response to HSP90 inhibition with the next-generation ZHER2:2891 Affibody molecule [18F]GE-226.

Sebastian Trousil; Susan Hoppmann; Quang-Dé Nguyen; Maciej Kaliszczak; Giampaolo Tomasi; Peter Iveson; Duncan Hiscock; Eric O. Aboagye

Accurate assessment of HER2 status remains a clinical challenge, with up to 20% of patients being potentially withdrawn from therapy or exposed to unnecessary toxicity. Non-invasive imaging is widely seen as a viable alternative to current methods, in particular in the setting of locoregional and distant recurrences not amenable to biopsy. A next-generation HER2-targeting Affibody-based radiotracer has been developed, [18F]GE-226, with enhanced pharmacokinetic characteristics and improved properties for large-scale and GMP grade synthesis. Kinetic modeling gave insights into Affibody-HER2 interactions. Intrinsic affinity to HER2 (KD = 76 pM) resulted in 11 to 67-fold higher [18F]GE-226 uptake in ten HER2 positive versus negative cell lines in vitro independent of lineage. Uptake correlated with HER2 protein expression but was independent of presence of other targets like EGFR. Blocking with [19F]GE-226 and HER2 siRNA treatment reduced uptake by 96.8 ± 2.6% and 81.7 ± 9.2%, respectively. Uptake in HER2 positive xenografts was rapid with steady state net irreversible binding kinetics making possible the distinction of HER2 negative (MCF7 (n = 6) and MCF7-p95HER2 (n = 3): NUV60 (normalized uptake value at 60 min; %ID/mL) 6.1 ± 0.7; Ki (irreversible uptake rate; mL/cm3/min) 0.0069 ± 0.0014) from HER2 positive tumors (NUV60 and Ki: MCF7-HER2, 10.9 ± 1.5 and 0.015 ± 0.0035; MDA-MB-361, 18.2 ± 3.4 and 0.025 ± 0.0052; SKOV-3, 18.7 ± 2.4 and 0.036 ± 0.0065; all n = 6) within 1 h. Tumor uptake correlated with HER2 expression determined by ELISA (r2=0.78). Specificity was further determined by comparing tumor localization of a fluorescently labeled tracer analogue with DAKO HercepTest. Affibody signal co-localized with HER2 expression at the cellular level independent of spatial heterogeneity. Tracer binding was not influenced by short-term or continuous exposure to trastuzumab in SKOV-3 xenografts (n=6) in keeping with differential epitope binding. Inhibition of the chaperone HSP90– of which HER2 is a client protein– by the therapeutic development candidate NVP-AUY922 caused dose-dependent HER2 degradation and consequently reduced tracer uptake in SKOV-3 cells in vitro and xenografts in vivo (area under the curve, AUC0-60: 618.4±90.1 and 446.7±42.8 %ID/mL*min for vehicle (n=4) and drug (n=5), respectively; P=0.043). In conclusion, [18F]GE-226 differentiates HER2 negative from HER2 expressing tumors. The tracer has potential utility for HER2 detection, irrespective of prior trastuzumab treatment and to monitor response to HSP90 inhibition. Lineage-independence of these results extends application beyond breast cancer. Due to the specific annotation to HER2, enhanced pharmacokinetic properties and completion of initial preclinical toxicology testing, [18F]GE-226 is now transitioning into clinical development. Citation Information: Mol Cancer Ther 2013;12(11 Suppl):B140. Citation Format: Sebastian Trousil, Susan Hoppmann, Quang-De Nguyen, Maciej Kaliszczak, Giampaolo Tomasi, Peter Iveson, Duncan Hiscock, Eric O. Aboagye. Positron emission tomography imaging of HER2 expression and pharmacodynamic response to HSP90 inhibition with the next-generation ZHER2:2891 Affibody molecule [18F]GE-226. [abstract]. In: Proceedings of the AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics; 2013 Oct 19-23; Boston, MA. Philadelphia (PA): AACR; Mol Cancer Ther 2013;12(11 Suppl):Abstract nr B140.


Cancer Research | 2012

Abstract 353: In vivo PET imaging of HER2 expression with GE226: An 18F-labelled affibody molecule

Susan Hoppmann; Antonios Danikas; Clare Durrant; Peter Iveson; Matthias Glaser; Bård Indrevoll; Duncan Hiscock

Proceedings: AACR 103rd Annual Meeting 2012‐‐ Mar 31‐Apr 4, 2012; Chicago, IL Background: The assessment of HER2 expression in biopsies from primary lesions of breast cancer patients is a standard procedure to select patients for HER2-targeted therapies. However, in metastatic disease in which HER2 status can change, determination of HER2 expression is not standard procedure, which complicates patient management. Herein we report evidence for GE226 ([18F]FBA-ZHER2:2891), a highly specific HER2 targeted imaging agent that can determine HER2 expression levels in preclinical tumour models. We propose that GE226 can be progressed to clinical development for non-invasive determination of the HER2 status in recurrent breast cancer patients to improve the clinical management and therapy selection. Methods: The highly selective HER2 targeted 18F-labelled Affibody molecule GE226 was characterized in a murine dual tumour breast cancer model bearing NCI-N87 (high HER2 status) and A431 (low HER2 status) xenografts in separate flanks. Tumour-bearing mice were injected with 3 to 10 MBq of GE226, followed by biodistribution or positron emission tomography (PET) imaging analysis. Results: Biodistribution analysis demonstrated good differentiation of GE226 retention between high and low HER2 expressing tumours (8.4% ID/g and 3.4% ID/g respectively, 30 min post injection). GE226 cleared quickly from background tissue, including kidneys, with excellent ratios for tumour-to-muscle (8.9 for high HER2 status tumours and 3.6 for low HER2 status tumours, 30 min post injection) and tumour-to-blood (2.5 for high HER2 status tumours and 1.0 for low HER2 status tumours, 30 min post injection). PET imaging of GE226 in the dual tumour mouse model showed a marked difference in signal intensity between the two tumour types. Conclusions: The highly selective HER2 targeted Affibody molecule GE226 can image different levels of HER2 expression in a dual-tumour preclinical model of breast cancer with good target-to-background ratios. These data compare favourably with previous patient SPECT and PET studies using the 111In- or 68Ga-labelled HER2-binding Affibody molecule ABY-002 (Baum et al., J Nucl Med. 2010;51(6):892-7) which supports the efficacy of this class of Affibody tracer for visualization of HER2 expressing metastases. We plan to progress GE226 further to assess HER2 status in metastatic breast cancer patients in clinical PET studies. Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 103rd Annual Meeting of the American Association for Cancer Research; 2012 Mar 31-Apr 4; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2012;72(8 Suppl):Abstract nr 353. doi:1538-7445.AM2012-353


Archive | 2011

HER2 binding peptides labeled with aluminium-[18] fluoride complexed by NOTA

Duncan Hiscock; Bård Indrevoll; Peter Iveson; Matthias Glaser; Rajiv Bhalla; Anthony Wilson


Archive | 2011

GLUTAMINE BIOMARKERS FOR DEPRESSION

Peter Hanson; Duncan Hiscock; Chris Morris; Alan Thomas

Collaboration


Dive into the Duncan Hiscock's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rajiv Bhalla

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge