Duncan J. H. Gaskin
Norwich Research Park
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Duncan J. H. Gaskin.
Journal of Bacteriology | 2007
Bruce M. Pearson; Duncan J. H. Gaskin; Ruud P. A. M. Segers; Jerry M. Wells; Piet J. M. Nuijten; Arnoud H. M. van Vliet
Campylobacter jejuni is a major human enteric pathogen that displays genetic variability via genomic reorganization and phase variation. This variability can adversely affect the outcomes and reproducibility of experiments. C. jejuni strain 81116 (NCTC11828) has been suggested to be a genetically stable strain (G. Manning, B. Duim, T. Wassenaar, J. A. Wagenaar, A. Ridley, and D. G. Newell, Appl. Environ. Microbiol. 67:1185-1189, 2001), is amenable to genetic manipulation, and is infective for chickens. Here we report the finished annotated genome sequence of C. jejuni strain 81116.
Biotechnology Letters | 2000
Duncan J. H. Gaskin; Karine Starck; Evgeny N. Vulfson
The feasibility of using a combinatorial phage display library of decapeptides to identify ligands which can interact with the surface of a crystal was assessed using geological calcium carbonate as a model. Two relatively strong binding clones were identified by ELISA, sequenced and the encoded oligopeptides were prepared by solid phase synthesis and their properties compared with those of casein hydrolysate.
Lipids | 2000
Nathalie Tijet; Urs Wäspi; Duncan J. H. Gaskin; Peter Hunziker; Bernard L. Muller; Evgeny N. Vulfson; Alan Slusarenko; Alan R. Brash; Ian Michael Whitehead
Guava fruit was identified as a particularly rich source of 13-hydroperoxide lyase activity. The enzyme proved stable to chromatographic procedures and was purified to homogeneity. Based on gel filtration and gel electrophoresis, the native enzyme appears to be a homotetramer with subunits of 55 kD. Starting with primers based on the peptide sequence, the enzyme was cloned by polymerase chain reaction with 3′ and 5′ rapid amplification of cDNA ends. The sequence shows approximately 60–70% identity to known 13-hydroperoxide lyases and is classified in cytochrome P450 74B subfamily as CYP74B5. The cDNA was expressed in Escherichia coli (BL21 cells), with optimal enzyme activity obtained in the absence of isopropyl-β-d-thiogalactopyranoside and σ-aminolevulinic acid. The expressed enzyme metabolized 13(S)-hydroperoxylinolenic acid over 10-fold faster than 13(S)-hydroperoxylinoleic acid and the 9-hydroperoxides of linoleic and linolenic acids. 13(S)-Hydroperoxylinolenic acid was converted to 12-oxododec-9(Z)-enoic acid and 3(Z)-hexenal, as identified by gas chromatography-mass spectrometry. The turnover number with this substrate, with enzyme concentration estimated from the Soret absorbance, was≈2000/s, comparable to values reported for the related allene oxide synthases. Distinctive features of the guava 13-hydroperoxide lyase and related cytochrome P450 are discussed.
Applied and Environmental Microbiology | 2007
Rachel A. Crossley; Duncan J. H. Gaskin; Kathryn Holmes; Francis Mulholland; Jerry M. Wells; David J. Kelly; Arnoud H. M. van Vliet; Nicholas J. Walton
ABSTRACT One of the pathways involved in the acquisition of the essential metal iron by bacteria involves the reduction of insoluble Fe3+ to soluble Fe2+, followed by transport of Fe2+ to the cytoplasm. Flavins have been implicated as electron donors in this poorly understood process. Ferrous iron uptake is essential for intestinal colonization by the important pathogen Campylobacter jejuni and may be of particular importance under low-oxygen conditions. In this study, the links among riboflavin biosynthesis, ferric reduction, and iron acquisition in C. jejuni NCTC11168 have been investigated. A riboflavin auxotroph was generated by inactivation of the ribB riboflavin biosynthesis gene (Cj0572), and the resulting isogenic ribB mutant only grew in the presence of exogenous riboflavin or the riboflavin precursor diacetyl but not in the presence of the downstream products flavin adenine dinucleotide and flavin mononucleotide. Riboflavin uptake was unaffected in the ribB mutant under iron-limited conditions but was lower in both the wild-type strain and the ribB mutant under iron-replete conditions. Mutation of the fur gene, which encodes an iron uptake regulator of C. jejuni, resulted in an increase in riboflavin uptake which was independent of the iron content of the medium, suggesting a role for Fur in the regulation of the as-yet-unknown riboflavin transport system. Finally, ferric reduction activity was independent of iron availability in the growth medium but was lowered in the ribB mutant compared to the wild-type strain and, conversely, increased in the fur mutant. Taken together, the findings confirm close relationships among iron acquisition, riboflavin production, and riboflavin uptake in C. jejuni.
Journal of Biological Chemistry | 2011
Colin Hanfrey; Bruce M. Pearson; Stuart T. Hazeldine; Jeongmi Lee; Duncan J. H. Gaskin; Patrick M. Woster; Margaret A. Phillips; Anthony J. Michael
Background: Many bacteria synthesize spermidine but lack orthologues of polyamine biosynthetic enzymes S-adenosylmethionine decarboxylase and spermidine synthase. Results: An alternative spermidine biosynthetic pathway is essential in Campylobacter jejuni. Conclusion: The alternative route via carboxyspermidine is the dominant pathway in the human gut microbiota and deep sea hydrothermal vents. Significance: A multiplicity of polyamine biosynthetic pathways exist, providing novel targets for development of antimicrobial drugs. The availability of fully sequenced bacterial genomes has revealed that many species known to synthesize the polyamine spermidine lack the spermidine biosynthetic enzymes S-adenosylmethionine decarboxylase and spermidine synthase. We found that such species possess orthologues of the sym-norspermidine biosynthetic enzymes carboxynorspermidine dehydrogenase and carboxynorspermidine decarboxylase. By deleting these genes in the food-borne pathogen Campylobacter jejuni, we found that the carboxynorspermidine decarboxylase orthologue is responsible for synthesizing spermidine and not sym-norspermidine in vivo. In polyamine auxotrophic gene deletion strains of C. jejuni, growth is highly compromised but can be restored by exogenous sym-homospermidine and to a lesser extent by sym-norspermidine. The alternative spermidine biosynthetic pathway is present in many bacterial phyla and is the dominant spermidine route in the human gut, stomach, and oral microbiomes, and it appears to have supplanted the S-adenosylmethionine decarboxylase/spermidine synthase pathway in the gut microbiota. Approximately half of the gut Firmicutes species appear to be polyamine auxotrophs, but all encode the potABCD spermidine/putrescine transporter. Orthologues encoding carboxyspermidine dehydrogenase and carboxyspermidine decarboxylase are found clustered with an array of diverse putrescine biosynthetic genes in different bacterial genomes, consistent with a role in spermidine, rather than sym-norspermidine biosynthesis. Due to the pervasiveness of ϵ-proteobacteria in deep sea hydrothermal vents and to the ubiquity of the alternative spermidine biosynthetic pathway in that phylum, the carboxyspermidine route is also dominant in deep sea hydrothermal vents. The carboxyspermidine pathway for polyamine biosynthesis is found in diverse human pathogens, and this alternative spermidine biosynthetic route presents an attractive target for developing novel antimicrobial compounds.
European journal of microbiology and immunology | 2012
M. T. Le; Ida Porcelli; Caroline M. Weight; Duncan J. H. Gaskin; Simon R. Carding; A. H. M. van Vliet
The bacterial pathogen Campylobacter jejuni is the leading cause of foodborne gastroenteritis in the developed world, with the organism being transmitted by ingestion of contaminated and undercooked poultry. Exposure to acid is an inevitable stressor for C. jejuni during gastric passage, yet the effect of low pH on C. jejuni virulence is still poorly understood. Here, we investigate the effect of acid-shock on C. jejuni viability, gene expression and host-cell invasion. C. jejuni strain NCTC 11168 survived acid exposure at pH 3.5 and above for up to 30 min without a drop in viability, and this exposure induced the expression of flagellar genes transcribed from σ(54)-dependent promoters. Furthermore, acid-shock resulted in increased C. jejuni invasion of m-ICcl2 mouse small intestine crypt cells grown on transwells, but not when the cells were grown on flat-bottomed wells. This suggests that C. jejuni might be invading intestinal epithelial cells at the basolateral side, possibly after paracellular passage. We hypothesize that acid-shock prior to intestinal entry may serve as a signal that primes C. jejuni to express its virulence gene repertoire including flagellar motility genes, but this requires further study in the context of an appropriate colonization or disease model.
Biotechnology Letters | 2001
Si-Won Oh; Duncan J. H. Gaskin; Dae Young Kwon; Evgeny N. Vulfson
The chain length specificity of Rhizomucor miehei lipase was altered by substituting Phe94 in the protein groove which is responsible for accommodating the acyl chain of the substrate. Three recombinant enzymes, Phe94Arg, Phe94Glu and Phe94Gln, were expressed in Pichia pastoris, purified and their ability to hydrolyse p-nitrophenyl esters and triacylglycerols of different chain length was studied.
Genome dynamics | 2009
Duncan J. H. Gaskin; Mark Reuter; Neil Shearer; Francis Mulholland; Bruce M. Pearson; A.H.M. van Vliet
The thermophilic Campylobacter species C. jejuni and C. coli are important human pathogens, which are major causes of bacterial gastroenteritis. The recent progress in genomics techniques has allowed for a rapid increase in our knowledge of the molecular biology of Campylobacter species, but needs to be matched by concurrent increases in our understanding of the unique biology of these organisms. Campylobacter species display significant levels of genomic variation via natural transformation, phase variation, plasmid transfer and infection with bacteriophages, and this poses a continuous challenge for studies on pathogenesis, physiology, epidemiology and evolution of Campylobacter. In this chapter we will review the current state of the art of the genomics of thermophilic Campylobacter species, and opportunities where genomics can further contribute to our understanding of the biology of these successful human pathogens.
Methods of Molecular Biology | 2010
Duncan J. H. Gaskin; Arnoud H. M. van Vliet
Campylobacter and Helicobacter species are important pathogens in man and animals. The study of their virulence and physiology has been difficult due to the lack of tractable genetic tools, since many of the techniques established in Escherichia coli and related species were found to be non-functional in Campylobacter and Helicobacter species. The advent of functional genomics techniques in the last decade has been accompanied by the development of genetic tools, which take advantage of specific features of Campylobacter and Helicobacter, like natural transformation. This has allowed for the construction of random mutant libraries based on in vitro transposition or ligated loops followed by natural transformation and recombination, thus circumventing selection against sequences when cloning or passaging libraries through E. coli. Uses of the techniques have been in the study of motility, gene expression, and gene essentiality. In this chapter, we discuss the approaches and techniques used for the construction of random mutant libraries in both Campylobacter and Helicobacter.
BMC Genomics | 2011
A. Métris; Mark Reuter; Duncan J. H. Gaskin; József Baranyi; Arnoud H. M. van Vliet