Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Duncan J. Maskell is active.

Publication


Featured researches published by Duncan J. Maskell.


Nature Genetics | 2003

Comparative analysis of the genome sequences of Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica

Julian Parkhill; Mohammed Sebaihia; Andrew Preston; Lee Murphy; Nicholas R. Thomson; David Harris; Matthew T. G. Holden; Carol Churcher; Stephen D. Bentley; Karen Mungall; Ana Cerdeño-Tárraga; Louise M. Temple; Keith James; Barbara Harris; Michael A. Quail; Mark Achtman; Rebecca Atkin; Steven Baker; David Basham; Nathalie Bason; Inna Cherevach; Tracey Chillingworth; Matthew Collins; Anne Cronin; Paul Davis; Jonathan Doggett; Theresa Feltwell; Arlette Goble; N. Hamlin; Heidi Hauser

Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica are closely related Gram-negative β-proteobacteria that colonize the respiratory tracts of mammals. B. pertussis is a strict human pathogen of recent evolutionary origin and is the primary etiologic agent of whooping cough. B. parapertussis can also cause whooping cough, and B. bronchiseptica causes chronic respiratory infections in a wide range of animals. We sequenced the genomes of B. bronchiseptica RB50 (5,338,400 bp; 5,007 predicted genes), B. parapertussis 12822 (4,773,551 bp; 4,404 genes) and B. pertussis Tohama I (4,086,186 bp; 3,816 genes). Our analysis indicates that B. parapertussis and B. pertussis are independent derivatives of B. bronchiseptica-like ancestors. During the evolution of these two host-restricted species there was large-scale gene loss and inactivation; host adaptation seems to be a consequence of loss, not gain, of function, and differences in virulence may be related to loss of regulatory or control functions.


Lancet Infectious Diseases | 2011

Meticillin-resistant Staphylococcus aureus with a novel mecA homologue in human and bovine populations in the UK and Denmark: a descriptive study

Laura García-Álvarez; Matthew T. G. Holden; Heather Lindsay; Cerian R Webb; Derek J. Brown; Martin D. Curran; Enid Walpole; Karen Brooks; Derek Pickard; Christopher Teale; Julian Parkhill; Stephen D. Bentley; Giles Edwards; E Kirsty Girvan; Angela M. Kearns; Bruno Pichon; Robert Hill; Anders Rhod Larsen; Robert Skov; Sharon J. Peacock; Duncan J. Maskell; Mark A. Holmes

Summary Background Animals can act as a reservoir and source for the emergence of novel meticillin-resistant Staphylococcus aureus (MRSA) clones in human beings. Here, we report the discovery of a strain of S aureus (LGA251) isolated from bulk milk that was phenotypically resistant to meticillin but tested negative for the mecA gene and a preliminary investigation of the extent to which such strains are present in bovine and human populations. Methods Isolates of bovine MRSA were obtained from the Veterinary Laboratories Agency in the UK, and isolates of human MRSA were obtained from diagnostic or reference laboratories (two in the UK and one in Denmark). From these collections, we searched for mecA PCR-negative bovine and human S aureus isolates showing phenotypic meticillin resistance. We used whole-genome sequencing to establish the genetic basis for the observed antibiotic resistance. Findings A divergent mecA homologue (mecALGA251) was discovered in the LGA251 genome located in a novel staphylococcal cassette chromosome mec element, designated type-XI SCCmec. The mecALGA251 was 70% identical to S aureus mecA homologues and was initially detected in 15 S aureus isolates from dairy cattle in England. These isolates were from three different multilocus sequence type lineages (CC130, CC705, and ST425); spa type t843 (associated with CC130) was identified in 60% of bovine isolates. When human mecA-negative MRSA isolates were tested, the mecALGA251 homologue was identified in 12 of 16 isolates from Scotland, 15 of 26 from England, and 24 of 32 from Denmark. As in cows, t843 was the most common spa type detected in human beings. Interpretation Although routine culture and antimicrobial susceptibility testing will identify S aureus isolates with this novel mecA homologue as meticillin resistant, present confirmatory methods will not identify them as MRSA. New diagnostic guidelines for the detection of MRSA should consider the inclusion of tests for mecALGA251. Funding Department for Environment, Food and Rural Affairs, Higher Education Funding Council for England, Isaac Newton Trust (University of Cambridge), and the Wellcome Trust.


Trends in Microbiology | 1996

Bacterial polysaccharide synthesis and gene nomenclature

Peter R. Reeves; Matthew Hobbs; Miguel A. Valvano; Mikael Skurnik; Chris Whitfield; David L. Coplin; Nobuo Kido; John D. Klena; Duncan J. Maskell; Christian R. H. Raetz; Paul D. Rick

Gene nomenclature for bacterial surface polysaccharides is complicated by the large number of structures and genes. We propose a scheme applicable to all species that distinguishes different classes of genes, provides a single name for all genes of a given function and greatly facilitates comparative studies.


Nature Genetics | 2008

High-throughput sequencing provides insights into genome variation and evolution in Salmonella Typhi

Kathryn E. Holt; Julian Parkhill; Camila J. Mazzoni; Philippe Roumagnac; François-Xavier Weill; Ian Goodhead; Richard Rance; Stephen Baker; Duncan J. Maskell; John Wain; Christiane Dolecek; Mark Achtman; Gordon Dougan

Isolates of Salmonella enterica serovar Typhi (Typhi), a human-restricted bacterial pathogen that causes typhoid, show limited genetic variation. We generated whole-genome sequences for 19 Typhi isolates using 454 (Roche) and Solexa (Illumina) technologies. Isolates, including the previously sequenced CT18 and Ty2 isolates, were selected to represent major nodes in the phylogenetic tree. Comparative analysis showed little evidence of purifying selection, antigenic variation or recombination between isolates. Rather, evolution in the Typhi population seems to be characterized by ongoing loss of gene function, consistent with a small effective population size. The lack of evidence for antigenic variation driven by immune selection is in contrast to strong adaptive selection for mutations conferring antibiotic resistance in Typhi. The observed patterns of genetic isolation and drift are consistent with the proposed key role of asymptomatic carriers of Typhi as the main reservoir of this pathogen, highlighting the need for identification and treatment of carriers.


Genome Research | 2009

Simultaneous assay of every Salmonella Typhi gene using one million transposon mutants

Gemma C. Langridge; Minh-Duy Phan; Daniel J. Turner; Timothy T. Perkins; Leopold Parts; Jana K. Haase; Ian G. Charles; Duncan J. Maskell; Sarah E. Peters; Gordon Dougan; John Wain; Julian Parkhill; A. Keith Turner

Very high-throughput sequencing technologies need to be matched by high-throughput functional studies if we are to make full use of the current explosion in genome sequences. We have generated a very large bacterial mutant pool, consisting of an estimated 1.1 million transposon mutants and we have used genomic DNA from this mutant pool, and Illumina nucleotide sequencing to prime from the transposon and sequence into the adjacent target DNA. With this method, which we have called TraDIS (transposon directed insertion-site sequencing), we have been able to map 370,000 unique transposon insertion sites to the Salmonella enterica serovar Typhi chromosome. The unprecedented density and resolution of mapped insertion sites, an average of one every 13 base pairs, has allowed us to assay simultaneously every gene in the genome for essentiality and generate a genome-wide list of candidate essential genes. In addition, the semiquantitative nature of the assay allowed us to identify genes that are advantageous and those that are disadvantageous for growth under standard laboratory conditions. Comparison of the mutant pool following growth in the presence or absence of ox bile enabled every gene to be assayed for its contribution toward bile tolerance, a trait required of any enteric bacterium and for carriage of S. Typhi in the gall bladder. This screen validated our hypothesis that we can simultaneously assay every gene in the genome to identify niche-specific essential genes.


Genome Research | 2008

Comparative genome analysis of Salmonella Enteritidis PT4 and Salmonella Gallinarum 287/91 provides insights into evolutionary and host adaptation pathways

Nicholas R. Thomson; Debra J. Clayton; Daniel Windhorst; Georgios S. Vernikos; Susanne Davidson; Carol Churcher; Michael A. Quail; Mark P. Stevens; Michael Jones; Michael Watson; Andy Barron; Abigail N. Layton; Derek Pickard; Robert A. Kingsley; Alex Bignell; Louise Clark; Barbara Harris; Doug Ormond; Zahra Abdellah; Karen Brooks; Inna Cherevach; Tracey Chillingworth; John Woodward; Halina Norberczak; Angela Lord; Claire Arrowsmith; Kay Jagels; Sharon Moule; Karen Mungall; Mandy Sanders

We have determined the complete genome sequences of a host-promiscuous Salmonella enterica serovar Enteritidis PT4 isolate P125109 and a chicken-restricted Salmonella enterica serovar Gallinarum isolate 287/91. Genome comparisons between these and other Salmonella isolates indicate that S. Gallinarum 287/91 is a recently evolved descendent of S. Enteritidis. Significantly, the genome of S. Gallinarum has undergone extensive degradation through deletion and pseudogene formation. Comparison of the pseudogenes in S. Gallinarum with those identified previously in other host-adapted bacteria reveals the loss of many common functional traits and provides insights into possible mechanisms of host and tissue adaptation. We propose that experimental analysis in chickens and mice of S. Enteritidis-harboring mutations in functional homologs of the pseudogenes present in S. Gallinarum could provide an experimentally tractable route toward unraveling the genetic basis of host adaptation in S. enterica.


Molecular Microbiology | 2004

Identification of host-specific colonization factors of Salmonella enterica serovar Typhimurium

Eirwen Morgan; June Campbell; Sonya C. Rowe; Jennie Bispham; Mark P. Stevens; Alison J. Bowen; Paul A. Barrow; Duncan J. Maskell; Timothy S. Wallis

The severity of infections caused by Salmonella enterica serovar Typhimurium varies depending on the host species. Numerous virulence genes have been identified in S. Typhimurium, largely from studies in mice, but their roles in infections of other species remain unclear. In the most comprehensive survey of its kind, through the use of signature‐tagged mutagenesis of S. Typhimurium we have identified mutants that were unable to colonize calf intestines, mutants unable to colonize chick intestines and mutants unable to colonize both species. The type three secretion systems encoded on Salmonella pathogenicity islands (SPIs) 1 and 2 were required for efficient colonization of cattle. However, disruption of these secretion systems only caused a minor defect in S. Typhimurium colonization of chicks. Transposon insertions in SPI‐4 compromised S. Typhimurium colonization of cattle, but not chicks. This is the first data confirming a role for SPI‐4 in pathogenesis. We have also been able to ascribe a role in colonization for cell surface polysaccharides, cell envelope proteins, and many ‘housekeeping’ genes and genes of unknown function. We conclude that S. Typhimurium uses different strategies to colonize calves and chicks. This has major implications for vaccine design.


PLOS Genetics | 2009

A strand-specific RNA-seq analysis of the transcriptome of the typhoid bacillus Salmonella typhi

Timothy T. Perkins; Robert A. Kingsley; Maria Fookes; Paul P. Gardner; Keith D. James; Lu-Lu Yu; Samuel A. Assefa; Miao-Xia He; Nicholas J. Croucher; Derek Pickard; Duncan J. Maskell; Julian Parkhill; Jyoti S. Choudhary; Nicholas R. Thomson; Gordon Dougan

High-density, strand-specific cDNA sequencing (ssRNA–seq) was used to analyze the transcriptome of Salmonella enterica serovar Typhi (S. Typhi). By mapping sequence data to the entire S. Typhi genome, we analyzed the transcriptome in a strand-specific manner and further defined transcribed regions encoded within prophages, pseudogenes, previously un-annotated, and 3′- or 5′-untranslated regions (UTR). An additional 40 novel candidate non-coding RNAs were identified beyond those previously annotated. Proteomic analysis was combined with transcriptome data to confirm and refine the annotation of a number of hpothetical genes. ssRNA–seq was also combined with microarray and proteome analysis to further define the S. Typhi OmpR regulon and identify novel OmpR regulated transcripts. Thus, ssRNA–seq provides a novel and powerful approach to the characterization of the bacterial transcriptome.


Molecular Microbiology | 1998

A Lethal Role For Lipid A In Salmonella Infections

Shahid Khan; Paul Everest; Spiros Servos; Neale Foxwell; Ulrich Zähringer; Helmut Brade; Ernst Th. Rietschel; Gordon Dougan; Ian G. Charles; Duncan J. Maskell

Salmonella infections in naturally susceptible mice grow rapidly, with death occurring only after bacterial numbers in vivo have reached a high threshold level, commonly called the lethal load. Despite much speculation, no direct evidence has been available to substantiate a role for any candidate bacterial components in causing death. One of the most likely candidates for the lethal toxin in salmonellosis is endotoxin, specifically the lipid A domain of the lipopolysaccharide (LPS) molecule. Consequently, we have constructed a Salmonella mutant with a deletion–insertion in its waaN gene, which encodes the enzyme that catalyses one of the two secondary acylation reactions that complete lipid A biosynthesis. The mutant biosynthesizes a lipid A molecule lacking a single fatty acyl chain and is consequently less able to induce cytokine and inducible nitric oxide synthase (iNOS) responses both in vivo and in vitro. The mutant bacteria appear healthy, are not sensitive to increased growth temperature and synthesize a full‐length O‐antigen‐containing LPS molecule lacking only the expected secondary acyl chain. On intravenous inoculation into susceptible BALB/c mice, wild‐type salmonellae grew at the expected rate of approximately 10‐fold per day in livers and spleens and caused the death of the infected mice when lethal loads of approximately 108 were attained in these organs. Somewhat unexpectedly, waaN mutant bacteria grew at exactly the same rate as wild‐type bacteria in BALB/c mice but, when counts reached 108 per organ, mice infected with mutant bacteria survived. Bacterial growth continued until unprecedentedly high counts of 109 per organ were attained, when approximately 10% of the mice died. Most of the animals carrying these high bacterial loads survived, and the bacteria were slowly cleared from the organs. These experiments provide the first direct evidence that death in a mouse typhoid infection is directly dependent on the toxicity of lipid A and suggest that this may be mediated via pro‐inflammatory cytokine and/or iNOS responses.


PLOS Pathogens | 2009

Genomic evidence for the evolution of Streptococcus equi : host restriction, increased virulence, and genetic exchange with human pathogens

Matthew T. G. Holden; Zoe Heather; R. Paillot; Karen F. Steward; K. Webb; Fern Ainslie; Thibaud Jourdan; Nathalie Bason; Nancy Holroyd; Karen Mungall; Michael A. Quail; Mandy Sanders; Mark Simmonds; David Willey; Karen Brooks; David M. Aanensen; Brian G. Spratt; Keith A. Jolley; Martin C. J. Maiden; Michael A. Kehoe; N. Chanter; Stephen D. Bentley; Carl Robinson; Duncan J. Maskell; Julian Parkhill; Andrew S. Waller

The continued evolution of bacterial pathogens has major implications for both human and animal disease, but the exchange of genetic material between host-restricted pathogens is rarely considered. Streptococcus equi subspecies equi (S. equi) is a host-restricted pathogen of horses that has evolved from the zoonotic pathogen Streptococcus equi subspecies zooepidemicus (S. zooepidemicus). These pathogens share approximately 80% genome sequence identity with the important human pathogen Streptococcus pyogenes. We sequenced and compared the genomes of S. equi 4047 and S. zooepidemicus H70 and screened S. equi and S. zooepidemicus strains from around the world to uncover evidence of the genetic events that have shaped the evolution of the S. equi genome and led to its emergence as a host-restricted pathogen. Our analysis provides evidence of functional loss due to mutation and deletion, coupled with pathogenic specialization through the acquisition of bacteriophage encoding a phospholipase A2 toxin, and four superantigens, and an integrative conjugative element carrying a novel iron acquisition system with similarity to the high pathogenicity island of Yersinia pestis. We also highlight that S. equi, S. zooepidemicus, and S. pyogenes share a common phage pool that enhances cross-species pathogen evolution. We conclude that the complex interplay of functional loss, pathogenic specialization, and genetic exchange between S. equi, S. zooepidemicus, and S. pyogenes continues to influence the evolution of these important streptococci.

Collaboration


Dive into the Duncan J. Maskell's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gordon Dougan

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Julian Parkhill

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge