Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Duncan Wilson is active.

Publication


Featured researches published by Duncan Wilson.


Nature | 2016

Candidalysin is a fungal peptide toxin critical for mucosal infection

David L. Moyes; Duncan Wilson; Jonathan P. Richardson; Selene Mogavero; Shirley X. Tang; Julia Wernecke; Sarah Höfs; Remi L. Gratacap; Jon Robbins; Manohursingh Runglall; Celia Murciano; Mariana Blagojevic; Selvam Thavaraj; Toni M. Förster; Betty Hebecker; Lydia Kasper; Gema Vizcay; Simona I. Iancu; Nessim Kichik; Antje Häder; Oliver Kurzai; Ting Luo; Thomas Krüger; Olaf Kniemeyer; Ernesto Cota; Oliver Bader; Robert T. Wheeler; Thomas Gutsmann; Bernhard Hube; Julian R. Naglik

Cytolytic proteins and peptide toxins are classical virulence factors of several bacterial pathogens which disrupt epithelial barrier function, damage cells and activate or modulate host immune responses. Such toxins have not been identified previously in human pathogenic fungi. Here we identify the first, to our knowledge, fungal cytolytic peptide toxin in the opportunistic pathogen Candida albicans. This secreted toxin directly damages epithelial membranes, triggers a danger response signalling pathway and activates epithelial immunity. Membrane permeabilization is enhanced by a positive charge at the carboxy terminus of the peptide, which triggers an inward current concomitant with calcium influx. C. albicans strains lacking this toxin do not activate or damage epithelial cells and are avirulent in animal models of mucosal infection. We propose the name ‘Candidalysin’ for this cytolytic peptide toxin; a newly identified, critical molecular determinant of epithelial damage and host recognition of the clinically important fungus, C. albicans.


PLOS ONE | 2012

Small but Crucial: The Novel Small Heat Shock Protein Hsp21 Mediates Stress Adaptation and Virulence in Candida albicans

François L. Mayer; Duncan Wilson; Ilse D. Jacobsen; Pedro Miramón; Silvia Slesiona; Iryna Bohovych; Alistair J. P. Brown; Bernhard Hube

Small heat shock proteins (sHsps) have multiple cellular functions. However, the biological function of sHsps in pathogenic microorganisms is largely unknown. In the present study we identified and characterized the novel sHsp Hsp21 of the human fungal pathogen Candida albicans. Using a reverse genetics approach we demonstrate the importance of Hsp21 for resistance of C. albicans to specific stresses, including thermal and oxidative stress. Furthermore, a hsp21Δ/Δ mutant was defective in invasive growth and formed significantly shorter filaments compared to the wild type under various filament-inducing conditions. Although adhesion to and invasion into human-derived endothelial and oral epithelial cells was unaltered, the hsp21Δ/Δ mutant exhibited a strongly reduced capacity to damage both cell lines. Furthermore, Hsp21 was required for resisting killing by human neutrophils. Measurements of intracellular levels of stress protective molecules demonstrated that Hsp21 is involved in both glycerol and glycogen regulation and plays a major role in trehalose homeostasis in response to elevated temperatures. Mutants defective in trehalose and, to a lesser extent, glycerol synthesis phenocopied HSP21 deletion in terms of increased susceptibility to environmental stress, strongly impaired capacity to damage epithelial cells and increased sensitivity to the killing activities of human primary neutrophils. Via systematic analysis of the three main C. albicans stress-responsive kinases (Mkc1, Cek1, Hog1) under a range of stressors, we demonstrate Hsp21-dependent phosphorylation of Cek1 in response to elevated temperatures. Finally, the hsp21Δ/Δ mutant displayed strongly attenuated virulence in two in vivo infection models. Taken together, Hsp21 mediates adaptation to specific stresses via fine-tuning homeostasis of compatible solutes and activation of the Cek1 pathway, and is crucial for multiple stages of C. albicans pathogenicity. Hsp21 therefore represents the first reported example of a small heat shock protein functioning as a virulence factor in a eukaryotic pathogen.


Trends in Biochemical Sciences | 1991

Intracellular membrane fusion

Duncan Wilson; Sidney W. Whiteheart; Lelio Orci

The NSF, SNAP, and SNAP receptors are key elements of the intracellular membrane fusion machinery. We use an affinity purification scheme, based on the function of SNAP receptor in assembling 20S fusion particles from NSF and SNAP proteins, to purify SNAP receptors from brain. Remarkably, each of the four SNAP receptors (or, SNAREs) thus delineated resides in synapses, with one receptor originating in the synaptic vesicle and another in the presynaptic plasma membrane that is targeted for fusion. This suggests a simple mechanism in which the general NSF/SNAP fusion machinery can assemble to bridge partner membranes in a complex containing elements of both vesicle and target membranes, and implies that similar fusion machines drive both constitutive fusion (ER-->Golgi-->surface and endocytosis) and regulated exocytosis. The vesicle (v-SNARE) and the target-associated t-SNAREs from the synapse are each members of compartmentally-specific families of membrane proteins found in yeast, animal cells, and neurons, thus raising the possibility that v-SNAREs and t-SNAREs encode specificity in membrane fusion processes that utilize a common mechanism.


PLOS Pathogens | 2012

The novel Candida albicans transporter Dur31 is a multi-stage pathogenicity factor

François L. Mayer; Duncan Wilson; Ilse D. Jacobsen; Pedro Miramón; Katharina Große; Bernhard Hube

Candida albicans is the most frequent cause of oral fungal infections. However, the exact pathogenicity mechanisms that this fungus employs are largely unknown and many of the genes expressed during oral infection are uncharacterized. In this study we sought to functionally characterize 12 previously unknown function genes associated with oral candidiasis. We generated homozygous knockout mutants for all 12 genes and analyzed their interaction with human oral epithelium in vitro. Eleven mutants caused significantly less epithelial damage and, of these, deletion of orf19.6656 (DUR31) elicited the strongest reduction in pathogenicity. Interestingly, DUR31 was not only involved in oral epithelial damage, but in multiple stages of candidiasis, including surviving attack by human neutrophils, endothelial damage and virulence in vivo. In silico analysis indicated that DUR31 encodes a sodium/substrate symporter with 13 transmembrane domains and no human homologue. We provide evidence that Dur31 transports histatin 5. This is one of the very first examples of microbial driven import of this highly cytotoxic antimicrobial peptide. Also, in contrast to wild type C. albicans, dur31Δ/Δ was unable to actively increase local environmental pH, suggesting that Dur31 lies in the extracellular alkalinization hyphal auto-induction pathway; and, indeed, DUR31 was required for morphogenesis. In agreement with this observation, dur31Δ/Δ was unable to assimilate the polyamine spermidine.


Eukaryotic Cell | 2010

Hgc1 Mediates Dynamic Candida albicans-Endothelium Adhesion Events during Circulation

Duncan Wilson; Bernhard Hube

ABSTRACT Common iatrogenic procedures can result in translocation of the human pathogenic fungus Candida albicans from mucosal surfaces to the bloodstream. Subsequent disseminated candidiasis and infection of deep-seated organs may occur if the fungus is not eliminated by blood cells. In these cases, fungal cells adhere to the endothelial cells of blood vessels, penetrate through endothelial layers, and invade deeper tissue. In this scenario, endothelial adhesion events must occur during circulation under conditions of physiological blood pressure. To investigate the fungal and host factors which contribute to this essential step of disseminated candidiasis, we have developed an in vitro circulatory C. albicans-endothelium interaction model. We demonstrate that both C. albicans yeast and hyphae can adhere under flow at a pressure similar to capillary blood pressure. Serum factors significantly enhanced the adhesion potential of viable but not killed C. albicans cells to endothelial cells. During circulation, C. albicans cells produced hyphae and the adhesion potential first increased, then decreased with time. We provide evidence that a specific temporal event in the yeast-to-hyphal transition, regulated by the G1 cyclin Hgc1, is critical for C. albicans-endothelium adhesion during circulation.


PLOS ONE | 2013

Hsp21 Potentiates Antifungal Drug Tolerance in Candida albicans

François L. Mayer; Duncan Wilson; Bernhard Hube

Systemic infections of humans with the fungal pathogen Candida albicans are associated with a high mortality rate. Currently, efficient treatment of these infections is hampered by the relatively low number of available antifungal drugs. We recently identified the small heat shock protein Hsp21 in C. albicans and demonstrated its fundamental role for environmental stress adaptation and fungal virulence. Hsp21 was found in several pathogenic Candida species but not in humans. This prompted us to investigate the effects of a broad range of different antifungal drugs on an Hsp21-null C. albicans mutant strain. Our results indicate that combinatorial therapy targeting Hsp21, together with specific antifungal drug targets, has strong synergistic potential. In addition, we demonstrate that Hsp21 is required for tolerance to ethanol-induced stress and induction of filamentation in response to pharmacological inhibition of Hsp90. These findings might pave the way for the development of new treatment strategies against Candida infections.


Eukaryotic Cell | 2014

Distinct roles of Candida albicans-specific genes in host-pathogen interactions

Duncan Wilson; François L. Mayer; Pedro Miramón; Francesco Citiulo; Silvia Slesiona; Ilse D. Jacobsen; Bernhard Hube

ABSTRACT Human fungal pathogens are distributed throughout their kingdom, suggesting that pathogenic potential evolved independently. Candida albicans is the most virulent member of the CUG clade of yeasts and a common cause of both superficial and invasive infections. We therefore hypothesized that C. albicans possesses distinct pathogenicity mechanisms. In silico genome subtraction and comparative transcriptional analysis identified a total of 65 C. albicans-specific genes (ASGs) expressed during infection. Phenotypic characterization of six ASG-null mutants demonstrated that these genes are dispensable for in vitro growth but play defined roles in host-pathogen interactions. Based on these analyses, we investigated two ASGs in greater detail. An orf19.6688Δ mutant was found to be fully virulent in a mouse model of disseminated candidiasis and to induce higher levels of the proinflammatory cytokine interleukin-1β (IL-1β) following incubation with murine macrophages. A pga16Δ mutant, on the other hand, exhibited attenuated virulence. Moreover, we provide evidence that secondary filamentation events (multiple hyphae emerging from a mother cell and hyphal branching) contribute to pathogenicity: PGA16 deletion did not influence primary hypha formation or extension following contact with epithelial cells; however, multiple hyphae and hyphal branching were strongly reduced. Significantly, these hyphae failed to damage host cells as effectively as the multiple hypha structures formed by wild-type C. albicans cells. Together, our data show that species-specific genes of a eukaryotic pathogen can play important roles in pathogenicity.


Nature | 1989

A fusion protein required for vesicle-mediated transport in both mammalian cells and yeast.

Duncan Wilson; Celeste A. Wilcox; Gregory C. Flynn; Ellson Y. Chen; Wun-Jing Kuang; William J. Henzel; Marc R. Block; Axel Ullrich


Journal of Cell Biology | 1992

A multisubunit particle implicated in membrane fusion.

Duncan Wilson; Sidney W. Whiteheart; Martin Wiedmann; Michael Brunner


Journal of Biological Chemistry | 1992

Soluble N-ethylmaleimide-sensitive fusion attachment proteins (SNAPs) bind to a multi-SNAP receptor complex in Golgi membranes.

Sidney W. Whiteheart; Michael Brunner; Duncan Wilson; Martin Wiedmann

Collaboration


Dive into the Duncan Wilson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martin Wiedmann

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Michael Brunner

Memorial Sloan Kettering Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge