Dunhai Li
Chinese Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dunhai Li.
Applied and Environmental Microbiology | 2002
Eric Devic; Dunhai Li; Alain Dauta; Peter Henriksen; Geoffrey A. Codd; Jean-Louis Marty; Didier Fournier
ABSTRACT Bioassays are little used to detect individual toxins in the environment because, compared to analytical methods, these assays are still limited by several problems, such as the sensitivity and specificity of detection. We tentatively solved these two drawbacks for detection of anatoxin-a(s) by engineering an acetylcholinesterase to increase its sensitivity and by using a combination of mutants to obtain increased analyte specificity. Anatoxin-a(s), a neurotoxin produced by some freshwater cyanobacteria, was detected by measuring the inhibition of acetylcholinesterase activity. By using mutated enzyme, the sensitivity of detection was brought to below the nanomole-per-liter level. However, anatoxin-a(s) is an organophosphorous compound, as are several synthetic molecules which are widely used as insecticides. The mode of action of these compounds is via inhibition of acetylcholinesterase, which makes the biotest nonspecific. The use of a four-mutant set of acetylcholinesterase variants, two mutants that are sensitive to anatoxin-a(s) and two mutants that are sensitive to the insecticides, allows specific detection of the cyanobacterial neurotoxin.
Hydrobiologia | 2005
Zhi-quan Hu; Yongding Liu; Dunhai Li; Alain Dauta
Microcystins, one type of the cyanobacterial toxins, show a broad range of hazardous effects on other organisms. Most of the researches on the toxic effects of microcystins have involved in animals and higher plants. Little work, however, has been done on evaluating the mechanisms of microcystin toxicity on algae. In this study, the toxicological effects of microcystin-RR (MC-RR) on the cyanobacterium Synechococcus elongatus were investigated. For this purpose, six physio-biochemical parameters (cell optical density, reactive oxygen species (ROS), malondialdehyde (MDA), glutathione (GSH), glutathione peroxidase (GSH-Px) and glutathione S-transferase (GST)) were tested in algal cells when exposed to 100 μg−1 microcystin-RR. The results showed that the growth of Synechococcus elongatus (expressed as optical density) was significantly inhibited compared with the control. At the same time, the treated algae exhibited a pronounced increase in production of ROS and MDA after 6 days exposure to microcystin-RR. Significant changes in GSH levels and GSH-Px, GSH activities were also detected in algal cells, with higher values being observed in the toxin treated algae after 6 days exposure. GST activities in the treated algae exhibited a decline after exposure and rapid augmentation on day 3, thereafter, they kept at a high level when compared to the control group. GSH contents and GSH-Px activities were also significantly raised in the toxin-treated algae cells from day 3, but they showed a sharp decrease on day 4, which was the onward of cell proliferation. These results suggested that oxidative stress manifested by elevated ROS levels and MDA contents might be responsible for the toxicity of microcystin to Synechococcus elongatus and the algal cells could improve their antioxidant ability through the enhancement of enzymatic and non-enzymatic preventive substances.
Environmental Pollution | 2012
Zhicong Wang; Dunhai Li; Hongjie Qin; Yinxia Li
As the eutrophication of lakes becomes an increasingly widespread phenomenon, cyanobacterial blooms are occurring in many countries. Although some research has been reported, there is currently no good method for bloom removal. We propose here a new two-step integrated approach to resolve this problem. The first step is the inactivation of the cyanobacteria via the addition of H(2)O(2). We found 60 mg/L was the lowest effective dose for a cyanobacterial concentration corresponding to 100 μg/L chlorophyll-a. The second step is the flocculation and sedimentation of the inactivated cyanobacteria. We found the addition of lake sediment clay (2 g/L) plus polymeric ferric sulfate (20 mg/L) effectively deposited them on the lake bottom. Since algaecides and flocculants had been used separately in previous reports, we innovatively combined these two types of reagents to remove blooms from the lake surface and to improve the dissolved oxygen content of lake sediments.
Applied Physics Letters | 2001
D. S. Qin; Dunhai Li; Y. Wang; Jiahua Zhang; Zhensheng Xie; Guonian Wang; Liancheng Wang; Dadong Yan
Organic electroluminescent devices with a structure of ITO/ploy (9-vinylcarbazole)/tris (8-hydroxyquinoline) aluminum (Alq3)/Mg:Ag are fabricated at different substrate temperatures (77, 298, and 438 K) during Alq3 deposition. It is found that the surface morphologies of Alq3 thin films greatly affect the I–V characteristics of the devices by the contact area between metal cathode and light-emitting layer. There is an increase in the luminous efficiency of the devices in the order 77 K<298 K<438 K. We attribute this trend to different structures of Alq3 thin films.
Journal of Arid Environments | 2003
Lanzhou Chen; Dunhai Li; Yongding Liu
Microcoleus vaginatus isolated from a desert algal crust of Shapotou was cultured in BG-11 medium containing 0.2mol l(-1) NaCl or 0.2mol l(-1) NaCl plus 100mg l(-1) sucrose, extracellular polymeric substances (EPS) or hot water-soluble polysaccharides (HWP), respectively. Photosynthetic oxygen evolution rates, photosystem 11 activity (Fv/Fm) and dark respiration of NaCl-stressed cells were enhanced significantly by the added sucrose or EPS under salt stress conditions (0.2mol l(-1) NaCl). Compared with cells treated with salt alone, sodium contents in cells reduced significantly; the content of cellular total carbohydrate did not change, and intracellular sucrose, water-soluble sugar increased significantly following the addition of exogenous carbohydrates. Sucrose synthase (SS) activity of NaCl-stressed cells increased following the addition of sucrose, and sucrose phosphate synthase (SPS) activity of NaCl-stressed cells increased following the addition of exogenous sucrose, EPS or HWP compared with cells stressed with NaCl only. The results suggested that the extruded EPS might be re-absorbed by cells of M. vaginatus as carbon source, they could increase salt tolerance of M. vaginatus through the changes of carbohydrate metabolism and the selective uptake of sodium ions
Current Microbiology | 2007
Wei Xing; Wenmin Huang; Dunhai Li; Yongding Liu
Changes in growth, photosynthetic pigments, and photosystem II (PS II) photochemical efficiency as well as production of siderophores of Microcystis aeruginosa and Microcystis wesenbergii were determined in this experiment. Results showed growths of M. aeruginosa and M. wesenbergii, measured by means of optical density at 665 nm, were severely inhibited under an iron-limited condition, whereas they thrived under an iron-replete condition. The contents of chlorophyll-a, carotenoid, phycocyanin, and allophycocyanin under an iron-limited condition were lower than those under an iron-replete condition, and they all reached maximal contents on day 4 under the iron-limited condition. PS II photochemical efficiencies (maximal PS II quantum yield), saturating light levels (Ik) and maximal electron transport rates (ETRmax) of M. aeruginosa and M. wesenbergii declined sharply under the iron-limited condition. The PS II photochemical efficiency and ETRmax of M. aeruginosa rose , whereas in the strain of M. wesenbergii, they declined gradually under the iron-replete condition. In addition, Ik of M. aeruginosa and M. wesenbergii under the iron-replete condition did not change obviously. Siderophore production of M. aeruginosa was higher than that of M. wesenbergii under the iron-limited condition. It was concluded that M. aeruginosa requires higher iron concentration for physiological and biochemical processes compared with M. wesenbergii, but its tolerance against too high a concentration of iron is weaker than M. wesenbergii.
Journal of Applied Phycology | 2012
Yinxia Li; Dunhai Li
To elucidate the changes in the proportions of microcystin (MC)-producing Microcystis, non-MC-producing Microcystis and Anabaena strains during cyanobacteria blooms, we compared their fitness under different initial biomass ratios. Culture experiments were carried out with three cyanobacterial strains: single-celled toxic Microcystis aeruginosa PCC7806 (Ma7806), single-celled nontoxic Microcystis wesenbergii FACHB-929 (Mw929) and filamentous Anabaena PCC7120 (An7120). Growth curves expressed as biovolume, Ma7806 microcystin-LR (MC-LR) content (detected with HPLC and ELISA), and the culture medium dissolved total nitrogen and dissolved total phosphorous (DTP) were measured to monitor nutrient uptake. Results suggest that the dominant strain in competition experiments between Ma7806 and An7120 was mainly controlled by the initial biomass ratio of the two strains, but there was also evidence for allelopathic interactions, where MC-LR produced by Ma7806 played an important role in the competition process. However, Mw929 was always less competitive when co-cultured with An7120 regardless of initial biomass ratio. Culture medium DTP showed significant differences between competition experiments in all sets, suggesting that Mw929 could be more suited to low phosphorus environments than Ma7806 and An7120. Overall, the competitive ability of Ma7806 was stronger than Mw929 when co-cultured with An7120 in the case of excess nutrients and the results could well unravel the seasonal succession process of cyanobacteria blooms.
Plant and Soil | 2013
Yiwen Wu; Benqiang Rao; Peipei Wu; Yongding Liu; Genbao Li; Dunhai Li
AimsBiological soil crusts (BSCs) could improve severe environment ecological conditions by increasing soil moisture, soil nitrogen concentration, and so on. In order to control desertification and recover the destroyed soil fertility utilizing a new means using BSCs, the soil surface was artificially inoculated with Microcoleus vaginatus and Scytonema javanicum. Relationships between the development of the artificially induced biological soil crusts and the distribution and dynamic changes of nitrogen and phosphorus in the soil crusts have been analyzed.MethodsCrusts of different ages were investigated by measuring soil physical and chemical factors, such as moisture, pH, total and available N content, and total and available P, which were correlated with the depths of the crusts.ResultsThis study found that the types of color, shape, and species components of the algal crusts increased with crust development. Soil moisture, total N, available N, and available P increased gradually with crust growth. Soil with crusts was wetter than the controlled naked sandy soil, and a significant correlation was observed between biomass and total nitrogen (r = 0.946, P = 0.015). Soil pH was lower than that of control. The scytonemin on the soil surface was exceptionally higher than the other pigments, and all the pigments were mainly distributed at the soil surface level. Though the crusts were mainly distributed on soil surface, the available P was mainly stored below the crust layer.ConclusionsPearson correlation tests indicated that artificially inoculated biological crusts could improve soil fertility and micro-environment of the top soil: The development of artificially induced BSCs was very well, and this was favorable to inducing the following crust succession.
Plant Physiology and Biochemistry | 2010
Wei Xing; Dunhai Li; Guihua Liu
Antioxidative responses of Elodea nuttallii (Planch.) H. St. John to short-term iron exposure were investigated in the study. Results showed that iron accumulation in E. nuttallii was concentration dependent. Growth of E. nuttallii was promoted by low iron concentration (1-10 mg L(-1) [Fe(3+)]), but growth inhibition was observed when iron concentration beyond 10 mg L(-1). The synthesis of protein and pigments increased within 1-10 mg L(-1) [Fe(3+)] range. The activities of superoxide dismutase (SOD), catalase (CAT), peroxidase (POD) and glutathione-S-transferase (GST) were up to maximal values at 10 mg L(-1) [Fe(3+)]. High iron concentration inhibited the synthesis of protein and pigments as well as activities of antioxidative enzymes, and accelerated degradation of pigment and production of ROS. Low iron concentration had no significant influences on PSII maximal quantum yield, activity of PSII and relative electron transport rate though PSII. Malondialdehyde (MDA) and proline concentrations were highest at 100 and 1 mg L(-1) [Fe(3+)], respectively.
Journal of Plant Physiology | 2008
Xiaojie Pan; Fengyi Chang; Lijuan Kang; Yongding Liu; Genbao Li; Dunhai Li
Environmental factors that affect the growth and microcystin production of microcystis have received worldwide attention because of the hazards microcystin poses to environmental safety and public health. Nevertheless, the effects of organic anthropogenic pollution on microcystis are rarely discussed. Gibberellin A(3) (GA(3)) is a vegetable hormone widely used in agriculture and horticulture that can contaminate water as an anthropogenic pollutant. Because of its common occurrence, we studied the effects of GA(3) on growth and microcystin production of Microcystis aeruginosa (M. aeruginosa) PCC7806 with different concentrations (0.001-25mg/L) in batch culture. The control was obtained without gibberellin under the same culture conditions. Growth, estimated by dry weight and cell number, increased after the GA(3) treatment. GA(3) increased the amounts of chlorophyll a, phycocyanin and cellular-soluble protein in the cells of M. aeruginosa PCC7806, but decreased the accumulation of water-soluble carbohydrates. In addition, GA(3) was observed to affect nitrogen absorption of the test algae, but to have no effect on the absorption of phosphorus. The amount of microcystin measured by enzyme-linked immunosorbent assay (ELISA) increased in GA(3) treatment groups, but the stimulatory effects were different in different culture phases. It is suggested that GA(3) increases M. aeruginosa growth by stimulating its absorbance of nitrogen and increasing its ability to use carbohydrates, accordingly increasing cellular pigments and thus finally inducing accumulation of protein and microcystin.