Dunja Lukovic
Spanish National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dunja Lukovic.
Stem Cells | 2015
Dunja Lukovic; Miodrag Stojkovic; Victoria Moreno-Manzano; Pavla Jendelová; Eva Syková; Shomi S. Bhattacharya; Slaven Erceg
Spinal cord injury (SCI) usually results in long lasting locomotor and sensory neuron degeneration below the injury. Astrocytes normally play a decisive role in mechanical and metabolic support of neurons, but in the spinal cord they cause injury, exerting well‐known detrimental effects that contribute to glial scar formation and inhibition of axon outgrowth. Cell transplantation is considered a promising approach for replacing damaged cells and promoting neuroprotective and neuroregenerative repair, but the effects of the grafted cells on local tissue and the regenerative properties of endogenous neural stem cells in the injured spinal cord are largely unknown. During the last 2 decades cumulative evidence from diverse animal models has indicated that reactive astrocytes in synergy with transplanted cells could be beneficial for injury in multiple ways, including neuroprotection and axonal growth. In this review, we specifically focus on the dual opposing roles of reactive astrocytes in SCI and how they contribute to the creation of a permissive environment when combined with transplanted cells as the influential components for a local regenerative niche. Modulation of reactive astrocyte function might represent an extremely attractive new therapy to enhance the functional outcomes in patients. Stem Cells 2015;33:1036–1041
Stem Cells | 2012
Dunja Lukovic; Victoria Moreno Manzano; Miodrag Stojkovic; Shom Shanker Bhattacharya; Slaven Erceg
Spinal cord injury (SCI) results in neural loss and consequently motor and sensory impairment below the injury. There are currently no effective therapies for the treatment of traumatic SCI in humans. Different kinds of cells including embryonic, fetal, and adult stem cells have been transplanted into animal models of SCI resulting in sensorimotor benefits. Transplantation of human embryonic stem cell (hESC)‐ or induced pluripotent stem cell (hiPSC)‐derived neural cells is nowadays a promising therapy for SCI. This review updates the recent progress in preclinical studies and discusses the advantages and flaws of various neural cell types derived from hESCs and hiPSCs. Before introducing the stem cell replacement strategies in clinical practice, this complex field needs to advance significantly in understanding the lesion itself, the animal model adequacy, and improve cell replacement source. This knowledge will contribute to the successful translation from animals to humans and lead to established guidelines for rigorous safety screening in order to be implemented in clinical practice. Stem Cells2012;30:1787–1792
Stem Cells and Development | 2014
Dunja Lukovic; Miodrag Stojkovic; Victoria Moreno-Manzano; Shomi S. Bhattacharya; Slaven Erceg
Halting the first clinical trial on the use of embryonic stem cell derivatives for spinal cord injury resulted in disappointment and created concerns about the future use of pluripotent stem cell-based therapy in the treatment of human diseases. This article presents reflections and concerns related to the halted embryonic stem cell-based clinical trial and discusses some important and controversial issues for achieving safe and successful cell therapy. This manuscript highlights two important points for successful translation of pluripotent stem cell-based therapy in clinics: (i) reproducible xeno-free growth and differentiation of pluripotent stem cells in good manufacturing practice conditions as the prerequisites to ensure a defined and controlled cell source and (ii) extensive studies in small and large animal models and comprehensive basic studies to determine any adverse or toxic effects of transplanted cells, especially teratoma formation, in addition to improving surgical procedure and cell delivery system.
Stem Cells | 2013
Marcela Garita‐HernÁndez; Francisco J. Diaz-Corrales; Dunja Lukovic; Irene GonzÁlez‐Guede; Andrea Diez-Lloret; M. Lourdes ValdÉs‐SÁnchez; Simone Massalini; Slaven Erceg; Shomi S. Bhattacharya
Retinitis pigmentosa (RP), a genetically heterogeneous group of diseases together with age‐related macular degeneration (AMD), are the leading causes of permanent blindness and are characterized by the progressive dysfunction and death of the light sensing photoreceptors of the retina. Due to the limited regeneration capacity of the mammalian retina, the scientific community has invested significantly in trying to obtain retinal progenitor cells from embryonic stem cells (ESC). These represent an unlimited source of retinal cells, but it has not yet been possible to achieve specific populations, such as photoreceptors, efficiently enough to allow them to be used safely in the future as cell therapy of RP or AMD. In this study, we generated a high yield of photoreceptors from directed differentiation of mouse ESC (mESC) by recapitulating crucial phases of retinal development. We present a new protocol of differentiation, involving hypoxia and taking into account extrinsic and intrinsic cues. These include niche‐specific conditions as well as the manipulation of the signaling pathways involved in retinal development. Our results show that hypoxia promotes and improves the differentiation of mESC toward photoreceptors. Different populations of retinal cells are increased in number under the hypoxic conditions applied, such as Crx‐positive cells, S‐Opsin‐positive cells, and double positive cells for Rhodopsin and Recoverin, as shown by immunofluorescence analysis. For the first time, this manuscript reports the high efficiency of differentiation in vivo and the expression of mature rod photoreceptor markers in a large number of differentiated cells, transplanted in the subretinal space of wild‐type mice. STEM CELLS 2013;31:966–978
Stem Cells | 2014
Dunja Lukovic; Lourdes Valdés-Sánchez; Irene Sanchez‐Vera; Victoria Moreno-Manzano; Miodrag Stojkovic; Shomi S. Bhattacharya; Slaven Erceg
Spinal cord injury results in neural loss and consequently motor and sensory impairment below the injury. Reactive astrocytes contribute to formation of glial scar, thus impeding axonal regeneration, through secretion of extracellular matrix molecules, chondroitin sulfate proteoglycans (CSPGs). In this study, we analyze lesion site tissue to reveal the possible mechanism underlying the functional recovery after cell transplantation of human embryonic stem cell (hESC)‐derived oligodendrocyte progenitor cell (OPC) and motoneuron progenitors (MP) and propose that transplanted cells increase astrogliosis through the regenerative signaling pathways activated in the host tissue that may crucial for restoring locomotor ability. We show that the transplantation of hESC‐derived OPC and MP promotes astrogliosis, through activation of Jagged1‐dependent Notch and Jak/STAT signaling that support axonal survival. The transplanted cells in synergism with reactive astrocytes create permissive environment in which the expression of detrimental genes (Cspg, Tenascins, and genes involved in SLIT/ROBO signaling) was significantly decreased while expression of beneficial ones (Laminins and Fibronectin) was increased. According to our data, this mechanism is activated in all transplantation groups independently of the level of locomotor recovery. These results indicate that modifying the beneficial function of reactive astrocytes could be a feasible therapeutic strategy for spinal cord injury in future. Stem Cells 2014;32:594–599
Scientific Reports | 2015
Dunja Lukovic; Ana Artero Castro; Ana Belen Garcia Delgado; María de los Angeles Martín Bernal; Noelia Luna Pelaez; Andrea Díez Lloret; Rocío Perez Espejo; Kunka Kamenarova; Laura Sánchez; Nicolás Cuenca; Marta Corton; Almudena Avila Fernandez; Anni Sorkio; Heli Skottman; Carmen Ayuso; Slaven Erceg; Shomi S. Bhattacharya
Retinitis pigmentosa (RP) represents a genetically heterogeneous group of retinal dystrophies affecting mainly the rod photoreceptors and in some instances also the retinal pigment epithelium (RPE) cells of the retina. Clinical symptoms and disease progression leading to moderate to severe loss of vision are well established and despite significant progress in the identification of causative genes, the disease pathology remains unclear. Lack of this understanding has so far hindered development of effective therapies. Here we report successful generation of human induced pluripotent stem cells (iPSC) from skin fibroblasts of a patient harboring a novel Ser331Cysfs*5 mutation in the MERTK gene. The patient was diagnosed with an early onset and severe form of autosomal recessive RP (arRP). Upon differentiation of these iPSC towards RPE, patient-specific RPE cells exhibited defective phagocytosis, a characteristic phenotype of MERTK deficiency observed in human patients and animal models. Thus we have created a faithful cellular model of arRP incorporating the human genetic background which will allow us to investigate in detail the disease mechanism, explore screening of a variety of therapeutic compounds/reagents and design either combined cell and gene- based therapies or independent approaches.
Scientific Reports | 2015
Dunja Lukovic; Victoria Moreno-Manzano; Eric Lopez-Mocholi; Francisco Javier Rodriguez-Jimenez; Pavla Jendelová; Eva Syková; Marc Oria; Miodrag Stojkovic; Slaven Erceg
Spinal cord injury (SCI) results in neural loss and consequently motor and sensory impairment below the injury. There are currently no effective therapies for the treatment of traumatic SCI in humans. Various animal models have been developed to mimic human SCI. Widely used animal models of SCI are complete or partial transection or experimental contusion and compression, with both bearing controversy as to which one more appropriately reproduces the human SCI functional consequences. Here we present in details the widely used procedure of complete spinal cord transection as a faithful animal model to investigate neural and functional repair of the damaged tissue by exogenous human transplanted cells. This injury model offers the advantage of complete damage to a spinal cord at a defined place and time, is relatively simple to standardize and is highly reproducible.
Current protocols in stem cell biology | 2012
Slaven Erceg; Dunja Lukovic; Victoria Moreno-Manzano; Miodrag Stojkovic; Shom Shanker Bhattacharya
Here we provide a protocol for differentiation of human embryonic stem cells (hESC) into cerebellar neurons using a novel defined culture method. This protocol is based on the application of inductive signaling factors involved in the early patterning of the cerebellar region of the neural tube, followed by the application of factors responsible for cerebellar neuron specification. Human pluripotent stem cells are induced to form spherical embryonic-like structures called embryoid bodies (EBs) and neuroepithelial tube-like rosettes using defined chemical conditions. In the presence of FGF, Wnt, and RA signaling factors the rosettes were specified to OTX2-expressing cells. Further specification of derived cells involves application of BMP factors involved in early development of granule cell progenitors, followed by mitogens and neurotrophins. It typically takes 5 weeks to generate the functional cerebellar granule neurons. This protocol is feeder-free, applies human recombinant factors, and produces high yield of desired neurons.
Frontiers in Genetics | 2014
Dunja Lukovic; Victoria Moreno-Manzano; Martin Klabusay; Miodrag Stojkovic; Shom Shanker Bhattacharya; Slaven Erceg
Several studies have demonstrated the important role of non-coding RNAs as regulators of posttranscriptional processes, including stem cells self-renewal and neural differentiation. Human embryonic stem cells (hESCs) and induced pluripotent stem cells (ihPSCs) show enormous potential in regenerative medicine due to their capacity to differentiate to virtually any type of cells of human body. Deciphering the role of non-coding RNAs in pluripotency, self-renewal and neural differentiation will reveal new molecular mechanisms involved in induction and maintenances of pluripotent state as well as triggering these cells toward clinically relevant cells for transplantation. In this brief review we will summarize recently published studies which reveal the role of non-coding RNAs in pluripotency and neural differentiation of hESCs and ihPSC.
Stem Cells Translational Medicine | 2017
Dunja Lukovic; Andrea Díez Lloret; Petra Stojkovic; Daniel Rodriguez-Martinez; Maria Amparo Pérez Aragó; Francisco Javier Rodriguez-Jimenez; Patricia González-Rodríguez; José López-Barneo; Eva Syková; Pavla Jendelová; Jelena Kostic; Victoria Moreno-Manzano; Miodrag Stojkovic; Shomi S. Bhattacharya; Slaven Erceg
Neural differentiation of human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) can produce a valuable and robust source of human neural cell subtypes, holding great promise for the study of neurogenesis and development, and for treating neurological diseases. However, current hESCs and hiPSCs neural differentiation protocols require either animal factors or embryoid body formation, which decreases efficiency and yield, and strongly limits medical applications. Here we develop a simple, animal‐free protocol for neural conversion of both hESCs and hiPSCs in adherent culture conditions. A simple medium formula including insulin induces the direct conversion of >98% of hESCs and hiPSCs into expandable, transplantable, and functional neural progenitors with neural rosette characteristics. Further differentiation of neural progenitors into dopaminergic and spinal motoneurons as well as astrocytes and oligodendrocytes indicates that these neural progenitors retain responsiveness to instructive cues revealing the robust applicability of the protocol in the treatment of different neurodegenerative diseases. The fact that this protocol includes animal‐free medium and human extracellular matrix components avoiding embryoid bodies makes this protocol suitable for the use in clinic. Stem Cells Translational Medicine 2017;6:1217–1226