Duraialagaraja Sudhakar
Tamil Nadu Agricultural University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Duraialagaraja Sudhakar.
Nature | 1999
Jinrong Peng; Donald E. Richards; Nigel M. Hartley; George P. Murphy; Katrien M. Devos; John E. Flintham; James Beales; Leslie J. Fish; Anthony J. Worland; Fatima Pelica; Duraialagaraja Sudhakar; Paul Christou; J. W. Snape; M. D. Gale; Nicholas P. Harberd
World wheat grain yields increased substantially in the 1960s and 1970s because farmers rapidly adopted the new varieties and cultivation methods of the so-called ‘green revolution’. The new varieties are shorter, increase grain yield at the expense of straw biomass, and are more resistant to damage by wind and rain,. These wheats are short because they respond abnormally to the plant growth hormone gibberellin. This reduced response to gibberellin is conferred by mutant dwarfing alleles at one of two Reduced height-1 (Rht-B1 and Rht-D1) loci,. Here we show that Rht-B1/Rht-D1 and maize dwarf-8 (d8), are orthologues of the Arabidopsis Gibberellin Insensitive (GAI) gene,. These genes encode proteins that resemble nuclear transcription factors and contain an SH2-like domain, indicating that phosphotyrosine may participate in gibberellin signalling. Six different orthologous dwarfing mutant alleles encode proteins that are altered in a conserved amino-terminal gibberellin signalling domain. Transgenic rice plants containing a mutant GAI allele give reduced responses to gibberellin and are dwarfed, indicating that mutant GAI orthologues could be used to increase yield in a wide range of crop species.
Transgenic Research | 2010
Sonia Gómez-Galera; Eduard Rojas; Duraialagaraja Sudhakar; Changfu Zhu; Ana M. Pelacho; Teresa Capell; Paul Christou
Staple food crops, in particular cereal grains, are poor sources of key mineral nutrients. As a result, the world’s poorest people, generally those subsisting on a monotonous cereal diet, are also those most vulnerable to mineral deficiency diseases. Various strategies have been proposed to deal with micronutrient deficiencies including the provision of mineral supplements, the fortification of processed food, the biofortification of crop plants at source with mineral-rich fertilizers and the implementation of breeding programs and genetic engineering approaches to generate mineral-rich varieties of staple crops. This review provides a critical comparison of the strategies that have been developed to address deficiencies in five key mineral nutrients—iodine, iron, zinc, calcium and selenium—and discusses the most recent advances in genetic engineering to increase mineral levels and bioavailability in our most important staple food crops.
The Plant Cell | 2001
Xiangdong Fu; Duraialagaraja Sudhakar; Jinrong Peng; Donald E. Richards; Paul Christou; Nicholas P. Harberd
Bioactive gibberellins (GAs) are essential endogenous regulators of plant growth. GA signaling is mediated via GAI, a nuclear member of the GRAS family of plant transcription factors. Previous experiments have suggested that GAI is a GA-derepressible repressor of plant growth. Here we test this hypothesis by examining the effects of the expression of Arabidopsis GAI in transgenic Basmati rice. High-level expression of GAI caused dwarfism and reduced GA responses, and the strength of this effect was correlated with the level of transgene expression. In particular, the expression of GAI abolished the GA-mediated induction of rice aleurone α-amylase activity, thus implicating GAI orthologs in the well-characterized cereal aleurone GA response. The GA derepressible repressor model predicts that high-level expression of GAI should confer dwarfism, and these observations are consistent with this prediction.
Transgenic Research | 1998
Duraialagaraja Sudhakar; Xiangdong Fu; Eva Stoger; Sarah Williams; Jacqui Spence; David P. Brown; Muthusamy Bharathi; John A. Gatehouse; Paul Christou
Transgenic rice (Oryza sativa L.) plants generated through particle bombardment expressed high levels of an insecticidal protein (the snowdrop lectin, GNA) directed against sap-sucking insects. Engineered plants expressed GNA either constitutively or in a tissue specific manner, depending on the nature of the promoter used to drive expression of the gene. We used specific antibodies raised against GNA to localize its expression in phloem tissue in plants engineered with the rice sucrose synthase promoter driving GNA expression. We report here molecular, biochemical and immunological analyses for fifteen independently-derived transformants out of more than 200 plants we generated.
Plant Molecular Biology | 2014
Hifzur Rahman; N. Jagadeeshselvam; R. Valarmathi; B. Sachin; R. Sasikala; N. Senthil; Duraialagaraja Sudhakar; S. Robin; Raveendran Muthurajan
Abstract Finger millet (Eleusine coracana L.) is a hardy cereal known for its superior level of tolerance against drought, salinity, diseases and its nutritional properties. In this study, attempts were made to unravel the physiological and molecular basis of salinity tolerance in two contrasting finger millet genotypes viz., CO 12 and Trichy 1. Physiological studies revealed that the tolerant genotype Trichy 1 had lower Na+ to K+ ratio in leaves and shoots, higher growth rate (osmotic tolerance) and ability to accumulate higher amount of total soluble sugar in leaves under salinity stress. We sequenced the salinity responsive leaf transcriptome of contrasting finger millet genotypes using IonProton platform and generated 27.91 million reads. Mapping and annotation of finger millet transcripts against rice gene models led to the identification of salinity responsive genes and genotype specific responses. Several functional groups of genes like transporters, transcription factors, genes involved in cell signaling, osmotic homeostasis and biosynthesis of compatible solutes were found to be highly up-regulated in the tolerant Trichy 1. Salinity stress inhibited photosynthetic capacity and photosynthesis related genes in the susceptible genotype CO 12. Several genes involved in cell growth and differentiation were found to be up-regulated in both the genotypes but more specifically in tolerant genotype. Genes involved in flavonoid biosynthesis were found to be down-regulated specifically in the salinity tolerant Trichy 1. This study provides a genome-wide transcriptional analysis of two finger millet genotypes differing in their level of salinity tolerance during a gradually progressing salinity stress under greenhouse conditions.
Plant Molecular Biology | 2002
Isaac Kurek; Rivka Dulberger; Abdussalam Azem; Batsheva Ben Tzvi; Duraialagaraja Sudhakar; Paul Christou; Adina Breiman
Wheat FKBP73 (wFKBP73) belongs to the FK506-binding protein (FKBP) family which, in common with the cyclophilin and parvulin families, possesses peptidyl prolylcis-trans isomerase (PPIase) activity. Wheat FKBP73 has been shown to contain three FKBP12-like domains, a tetratricopeptide repeat (TPR) via which it binds heat shock protein 90 and a calmodulin-binding domain (CaMbd). In this study we investigated: (1) the contribution of the N-terminal and C-terminal moieties of wFKBP73 to its biological activity by over-expression of the prolyl isomerase domains in transgenic rice, and (2) the biochemical characteristics of the C-terminal moiety. The recombinant wFKBP73 was found to bind calmodulin via the CaMbd and to be present mainly as a dimer in solution. The dimerization was abrogated when 138 amino acids from the C-terminal half were deleted. Expression of the full-length FKBP73 produced fertile rice plants, whereas the expression of the peptidyl prolyl cis-trans isomerase domains in transgenic rice resulted in male-sterile plants. The male sterility was expressed at various stages of anther development with arrest of normal pollen development occurring after separation of the microspores from the tetrads. Although the direct cause of the dominant male sterility is not yet defined, we suggest that it is associated with a novel interaction of the prolyl isomerase domains with anther specific target proteins.
Plant Physiology and Biochemistry | 2012
Sonia Gómez-Galera; Duraialagaraja Sudhakar; Ana M. Pelacho; Teresa Capell; Paul Christou
Cereals have evolved chelation systems to mobilize insoluble iron in the soil, but in rice this process is rather inefficient, making the crop highly susceptible to alkaline soils. We therefore engineered rice to express the barley iron-phytosiderophore transporter (HvYS1), which enables barley plants to take up iron from alkaline soils. A representative transgenic rice line was grown in standard (pH 5.5) or alkaline soil (pH 8.5) to evaluate alkaline tolerance and iron mobilization. Transgenic plants developed secondary tillers and set seeds when grown in standard soil although iron concentration remained similar in leaves and seeds compared to wild type. However, when grown in alkaline soil transgenic plants exhibited enhanced growth, yield and iron concentration in leaves compared to the wild type plants which were severely stunted. Transgenic plants took up iron more efficiently from alkaline soil compared to wild type, indicating an enhanced capacity to increase iron mobility ex situ. Interestingly, all the additional iron accumulated in vegetative tissues, i.e. there was no difference in iron concentration in the seeds of wild type and transgenic plants. Our data suggest that iron uptake from the rhizosphere can be enhanced through expression of HvYS1 and confirm the operation of a partitioning mechanism that diverts iron to leaves rather than seeds, under stress.
Plant Science | 2000
G. Mazithulela; Duraialagaraja Sudhakar; T. Heckel; Luke Mehlo; Paul Christou; J.W. Davies; M.I. Boulton
Maize streak geminivirus (MSV) is a single-stranded DNA virus that infects cereals and other grasses. A promoter region incorporating the MSV large intergenic region and movement protein gene sequence was ligated to the gus (beta-glucuronidase) reporter gene which replaced the virus coat protein (CP) gene. The CP promoter activity was analysed in transgenic rice plants (Oryza sativa L.) and was compared with that obtained in plants transformed with the gus gene downstream of the cauliflower mosaic virus (CaMV) 35S promoter. The MSV CP promoter activity varied in the five plant lines tested, but was always less than that of the CaMV promoter. Histochemistry showed that the MSV CP promoter was active in cells of regenerating callus but in regenerated plants it provided an expression pattern restricted to the vascular tissues of the root, stem, leaf and floral organs. Expression was highest in phloem-associated tissues of the vegetative organs and was absent from the tip and elongation region of seedling roots. Thus, the MSV CP promoter shows a degree of developmental regulation and can be used to confer tissue-specific expression in transgenic rice plants.
Transgenic Research | 2012
Gemma Farré; Duraialagaraja Sudhakar; Shaista Naqvi; Gerhard Sandmann; Paul Christou; Teresa Capell; Changfu Zhu
We generated transgenic rice plants overexpressing Arabidopsis thaliana ρ-hydroxyphenylpyruvate dioxygenase (HPPD), which catalyzes the first committed step in vitamin E biosynthesis. Transgenic grains accumulated marginally higher levels of total tocochromanols than controls, reflecting a small increase in absolute tocotrienol synthesis (but no change in the relative abundance of the α and γ isoforms). In contrast, there was no change in the absolute tocopherol level, but a significant shift from the γ to the α isoform. These data confirm HPPD is not rate limiting, and that increasing flux through the early pathway reveals downstream bottlenecks that act as metabolic tipping points.
Bioinformation | 2008
Loganathan Arul; George Benita; Duraialagaraja Sudhakar; Balsamy Thayumanavan; Ponnusamy Balasubramanian
Glycosyl hydrolases hydrolyze the glycosidic bond in carbohydrates or between a carbohydrate and a non‐carbohydrate moiety. β‐glucuronidase (GUS) is classified under two glycosyl hydrolase families (2 and 79) and the family‐2 β‐glucuronidase is reported in a wide range of organisms, but not in plants. The family‐79 endo-β-glucuronidase (heparanase) is reported in microorganisms, vertebrates and plants. The E. coli family‐2 β‐glucuronidase (uidA) had been successfully devised as a reporter gene in plant transformation on the basis that plants do not have homologous GUS activity. On the contrary, histochemical staining with X‐Gluc was reported in wild type (non-transgenic) plants. Data shows that, family‐2 β‐glucuronidase homologous sequence is not found in plants. Further, β‐glucuronidases of family‐2 and 79 lack appreciable sequence similarity. However, the catalytic site residues, glutamic acid and tyrosine of the family‐2 β‐glucuronidase are found to be conserved in family‐79 β‐glucuronidase of plants. This led to propose that the GUS staining reported in wild type plants is largely because of the broad substrate specificity of family‐79 β-glucuronidase on X‐Gluc and not due to the family‐2 β‐glucuronidase, as the latter has been found to be missing in plants.