Durdu Ö. Güney
Michigan Technological University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Durdu Ö. Güney.
Scientific Reports | 2015
Ankit Vora; Jephias Gwamuri; Nezih Pala; Anand Kulkarni; Joshua M. Pearce; Durdu Ö. Güney
Using metamaterial absorbers, we have shown that metallic layers in the absorbers do not necessarily constitute undesired resistive heating problem for photovoltaics. Tailoring the geometric skin depth of metals and employing the natural bulk absorbance characteristics of the semiconductors in those absorbers can enable the exchange of undesired resistive losses with the useful optical absorbance in the active semiconductors. Thus, Ohmic loss dominated metamaterial absorbers can be converted into photovoltaic near-perfect absorbers with the advantage of harvesting the full potential of light management offered by the metamaterial absorbers. Based on experimental permittivity data for indium gallium nitride, we have shown that between 75%–95% absorbance can be achieved in the semiconductor layers of the converted metamaterial absorbers. Besides other metamaterial and plasmonic devices, our results may also apply to photodectors and other metal or semiconductor based optical devices where resistive losses and power consumption are important pertaining to the device performance.
Physical Review B | 2009
Durdu Ö. Güney; Thomas Koschny; Costas M. Soukoulis
of reducing them is found. We present two different techniques to reduce ohmic losses at both lower and higher frequencies, based on geometric tailoring of the individual magnetic constituents. We show that an increased radius of curvature, in general, leads to the least losses in metamaterials. Particularly at higher THz frequencies, bulky structures outperform the planar structures.
Optics Express | 2010
Durdu Ö. Güney; Thomas Koschny; Costas M. Soukoulis
Isotropic negative index metamaterials (NIMs) are highly desired, particularly for the realization of ultra-high resolution lenses. However, existing isotropic NIMs function only two-dimensionally and cannot be miniaturized beyond microwaves. Direct laser writing processes can be a paradigm shift toward the fabrication of three-dimensionally (3D) isotropic bulk optical metamaterials, but only at the expense of an additional design constraint, namely connectivity. Here, we demonstrate with a proof-of-principle design that the requirement connectivity does not preclude fully isotropic left-handed behavior. This is an important step towards the realization of bulk 3D isotropic NIMs at optical wavelengths.
Journal of Applied Physics | 2013
Hayrettin Odabasi; Fernando L. Teixeira; Durdu Ö. Güney
We study the radiation properties of electrically small resonant antennas (ka<1) composed of electric-field-coupled (ELC) and complementary electric-field-coupled (CELC) resonators and a monopole antenna. We use such parasitic ELC and CELC “metaresonators” to design various electrically small antennas. In particular, monopole-excited and bent-monopole-excited CELC resonator antennas are proposed that provide very low profiles on the order of λ0/20. We compare the performance of the proposed ELC and CELC antennas against more conventional designs based upon split-ring resonators.
Optics Letters | 2009
Durdu Ö. Güney; Thomas Koschny; Maria Kafesaki; Costas M. Soukoulis
We show the designs of bulk one- and two-dimensionally isotropic photonic negative index metamaterials working around telecom wavelengths. The designed structures are inherently connected, which makes fabrication by direct laser writing and chemical vapor deposition or other techniques possible.We show the designs of oneand two-dimensional photonic negative index metamaterials around telecom wavelengths. Designed bulk structures are inherently connected, which render their fabrication feasible by direct laser writing and chemical vapor deposition. ©2008 Optical Society of America OCIS Codes: (350.3618) Left-handed materials; (260.2065) Effective medium theory Report Documentation Page Form Approved OMB No. 0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE 2008 2. REPORT TYPE 3. DATES COVERED 00-00-2008 to 00-00-2008 4. TITLE AND SUBTITLE Bulk Negative Index Photonic Metamaterials for Direct Laser Writing 5a. CONTRACT NUMBER
Journal of Applied Physics | 2014
Ankit Vora; Jephias Gwamuri; Joshua M. Pearce; Paul L. Bergstrom; Durdu Ö. Güney
We study polarization independent improved light trapping in commercial thin film hydrogenated amorphous silicon (a-Si:H) solar photovoltaic cells using a three-dimensional silver array of multi-resonant nano-disk structures embedded in a silicon nitride anti-reflection coating to enhance optical absorption in the intrinsic layer (i-a-Si:H) for the visible spectrum for any polarization angle. Predicted total optical enhancement (OE) in absorption in the i-a-Si:H for AM-1.5 solar spectrum is 18.51% as compared to the reference, and producing a 19.65% improvement in short-circuit current density (JSC) over 11.7 mA/cm2 for a reference cell. The JSC in the nano-disk patterned solar cell (NDPSC) was found to be higher than the commercial reference structure for any incident angle. The NDPSC has a multi-resonant optical response for the visible spectrum and the associated mechanism for OE in i-a-Si:H layer is excitation of Fabry-Perot resonance facilitated by surface plasmon resonances. The detrimental Staebler...
Journal of The Optical Society of America B-optical Physics | 2012
Muhammad I. Aslam; Durdu Ö. Güney
We present what is to our knowledge the first dual-band negative index metamaterial that operates in the visible spectrum. The optimized four-functional-layer metamaterial structure exhibits the first double-negative (i.e., simultaneously negative permittivity and permeability) band in the red region of the visible spectrum with a figure of merit of 1.7 and the second double-negative band in the green region of the visible spectrum with a figure of merit of 3.2. The optical behavior of the proposed structure is independent of the polarization of the incident field. This low-loss metamaterial structure can be treated as a modified version of a fishnet metamaterial structure with an additional metal layer of different thickness in a single functional layer. The additional metal layer extends the diluted plasma frequency deep into the visible spectrum above the second-order magnetic resonance of the structure and hence provides a dual-band operation with simultaneously negative effective permittivity and permeability. Broadband metamaterials with multiple negative index bands may be possible with the same technique by employing higher-order magnetic resonances. The structure can be fabricated with standard microfabrication techniques that have been used to fabricate fishnet metamaterial structures.
Physical Review B | 2011
Durdu Ö. Güney; Thomas Koschny; Costas M. Soukoulis
Using interplay between surface plasmons and metamaterials, we propose a different technique for novel metamaterial designs. We show that surface plasmons existing on thin metal surfaces can be used to “drive” nonresonant structures in their vicinity to provide new types of electric and magnetic resonators. These resonators strictly adhere to plasmon dispersion of the host-metal film. The operating frequency of the resultant metamaterials can be scaled to extremely high frequencies, otherwise not possible with conventional split-ring-resonatorbased designs. Our approach opens possibilities for theory and experiment in the interface of plasmonics and metamaterials to harvest many potential applications of both fields combined.
Optics Express | 2015
Arash Ahmadivand; Nezih Pala; Durdu Ö. Güney
A four-member homogenous quadrumer composed of silver core-shell nanostructures is tailored to enhance photothermal heat generation efficiency in sub-nanosecond time scale. Calculating the plasmonic and photothermal responses of metallic cluster, we show that it is possible to achieve thermal heat flux generation of 64.7 μW.cm-2 and temperature changes in the range of ΔT = 150 K, using Fano resonant effect. Photothermal heat generation efficiency is even further enhanced by adding carbon nanospheres to the offset gap between particles and obtained thermal heat flux generation of 93.3 μW.cm-2 and temperature increase of ΔT = 172 K. It is also shown that placement of dielectric spheres gives rise to arise collective magnetic dark plasmon modes that improves the quality of the observed Fano resonances. The presented data attests the superior performance of the proposed metallodielectric structures to utilize in practical tumor and cancer therapies and drug delivery applications.
Optics Express | 2015
al Farooqui Ma; Breeland J; Aslam Mi; Mehdi Sadatgol; Özdemir Şk; Mark Tame; Lan Yang; Durdu Ö. Güney
We propose a scheme for the distillation of partially entangled two-photon Bell and three-photon W states using metamaterials. The distillation of partially entangled Bell states is achieved by using two metamaterials with polarization dependence, one of which is rotated by π/2 around the direction of propagation of the photons. On the other hand, the distillation of three-photon W states is achieved by using one polarization dependent metamaterial and two polarization independent metamaterials. Upon transmission of the photons of the partially entangled states through the metamaterials the entanglement of the states increases and they become distilled. This work opens up new directions in quantum optical state engineering by showing how metamaterials can be used to carry out a quantum information processing task.