Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dušan Žitňan is active.

Publication


Featured researches published by Dušan Žitňan.


Current Biology | 2006

A Command Chemical Triggers an Innate Behavior by Sequential Activation of Multiple Peptidergic Ensembles

Young-Joon Kim; Dušan Žitňan; C. Giovanni Galizia; Kook-Ho Cho; Michael E. Adams

BACKGROUND At the end of each molt, insects shed their old cuticle by performing the ecdysis sequence, an innate behavior consisting of three steps: pre-ecdysis, ecdysis, and postecdysis. Blood-borne ecdysis-triggering hormone (ETH) activates the behavioral sequence through direct actions on the central nervous system. RESULTS To elucidate neural substrates underlying the ecdysis sequence, we identified neurons expressing ETH receptors (ETHRs) in Drosophila. Distinct ensembles of ETHR neurons express numerous neuropeptides including kinin, FMRFamides, eclosion hormone (EH), crustacean cardioactive peptide (CCAP), myoinhibitory peptides (MIP), and bursicon. Real-time imaging of intracellular calcium dynamics revealed sequential activation of these ensembles after ETH action. Specifically, FMRFamide neurons are activated during pre-ecdysis; EH, CCAP, and CCAP/MIP neurons are active prior to and during ecdysis; and activity of CCAP/MIP/bursicon neurons coincides with postecdysis. Targeted ablation of specific ETHR ensembles produces behavioral deficits consistent with their proposed roles in the behavioral sequence. CONCLUSIONS Our findings offer novel insights into how a command chemical orchestrates an innate behavior by stepwise recruitment of central peptidergic ensembles.


PLOS ONE | 2008

Neuropeptide Receptor Transcriptome Reveals Unidentified Neuroendocrine Pathways

Naoki Yamanaka; Sachie Yamamoto; Dušan Žitňan; Ken Watanabe; Tsuyoshi Kawada; Honoo Satake; Yu Kaneko; Kiyoshi Hiruma; Yoshiaki Tanaka; Tetsuro Shinoda; Hiroshi Kataoka

Neuropeptides are an important class of molecules involved in diverse aspects of metazoan development and homeostasis. Insects are ideal model systems to investigate neuropeptide functions, and the major focus of insect neuropeptide research in the last decade has been on the identification of their receptors. Despite these vigorous efforts, receptors for some key neuropeptides in insect development such as prothoracicotropic hormone, eclosion hormone and allatotropin (AT), remain undefined. In this paper, we report the comprehensive cloning of neuropeptide G protein-coupled receptors from the silkworm, Bombyx mori, and systematic analyses of their expression. Based on the expression patterns of orphan receptors, we identified the long-sought receptor for AT, which is thought to stimulate juvenile hormone biosynthesis in the corpora allata (CA). Surprisingly, however, the AT receptor was not highly expressed in the CA, but instead was predominantly transcribed in the corpora cardiaca (CC), an organ adjacent to the CA. Indeed, by using a reverse-physiological approach, we purified and characterized novel allatoregulatory peptides produced in AT receptor-expressing CC cells, which may indirectly mediate AT activity on the CA. All of the above findings confirm the effectiveness of a systematic analysis of the receptor transcriptome, not only in characterizing orphan receptors, but also in identifying novel players and hidden mechanisms in important biological processes. This work illustrates how using a combinatorial approach employing bioinformatic, molecular, biochemical and physiological methods can help solve recalcitrant problems in neuropeptide research.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Natalisin, a tachykinin-like signaling system, regulates sexual activity and fecundity in insects

Hongbo Jiang; Ankhbayar Lkhagva; Ivana Daubnerová; Hyo Seok Chae; Ladislav Šimo; Sung Hwan Jung; Yeu Kyung Yoon; Na Rae Lee; Jae Young Seong; Dušan Žitňan; Yoonseong Park; Young J. Kim

Significance Successful courtship and reproduction, which are at the center of evolutionary processes, involve complex interactions between neural and endocrine systems. In this study, we describe a group of neuropeptides that we have named “natalisin” (from the Latin natalis for “birth”) because of their function in promoting reproduction in arthropods. Three holometabolous insects, Drosophila melanogaster, Bombyx mori, and Tribolium castaneum were examined to understand the patterns of natalisin expression and to assess the phenotype of natalisin RNAi, and revealed the functions in courtship behavior and egg production. The natalisin receptor identified here warrants expanded study to elucidate the mechanisms of natalisin in arthropod reproduction. An arthropod-specific peptidergic system, the neuropeptide designated here as natalisin and its receptor, was identified and investigated in three holometabolous insect species: Drosophila melanogaster, Tribolium castaneum, and Bombyx mori. In all three species, natalisin expression was observed in 3–4 pairs of the brain neurons: the anterior dorso-lateral interneurons, inferior contralateral interneurons, and small pars intercerebralis neurons. In B. mori, natalisin also was expressed in two additional pairs of contralateral interneurons in the subesophageal ganglion. Natalisin-RNAi and the activation or silencing of the neural activities in the natalisin-specific cells in D. melanogaster induced significant defects in the mating behaviors of both males and females. Knockdown of natalisin expression in T. castaneum resulted in significant reduction in the fecundity. The similarity of the natalisin C-terminal motifs to those of vertebrate tachykinins and of tachykinin-related peptides in arthropods led us to identify the natalisin receptor. A G protein-coupled receptor, previously known as tachykinin receptor 86C (also known as the neurokinin K receptor of D. melanogaster), now has been recognized as a bona fide natalisin receptor. Taken together, the taxonomic distribution pattern of the natalisin gene and the phylogeny of the receptor suggest that natalisin is an ancestral sibling of tachykinin that evolved only in the arthropod lineage.


Peptides | 2010

Ecdysis triggering hormone signaling in arthropods.

Ladislav Roller; Inka Žitňanová; Li Dai; Ladislav Šimo; Yoonseong Park; Honoo Satake; Yoshiaki Tanaka; Michael E. Adams; Dušan Žitňan

Ecdysis triggering hormones (ETHs) from endocrine Inka cells initiate the ecdysis sequence through action on central neurons expressing ETH receptors (ETHR) in model moth and dipteran species. We used various biochemical, molecular and BLAST search techniques to detect these signaling molecules in representatives of diverse arthropods. Using peptide isolation from tracheal extracts, cDNA cloning or homology searches, we identified ETHs in a variety of hemimetabolous and holometabolous insects. Most insects produce two related ETHs, but only a single active peptide was isolated from the cricket and one peptide is encoded by the eth gene of the honeybee, parasitic wasp and aphid. Immunohistochemical staining with antiserum to Manduca PETH revealed Inka cells on tracheal surface of diverse insects. In spite of conserved ETH sequences, comparison of natural and the ETH-induced ecdysis sequence in the honeybee and beetle revealed considerable species-specific differences in pre-ecdysis and ecdysis behaviors. DNA sequences coding for putative ETHR were deduced from available genomes of several hemimetabolous and holometabolous insects. In all insects examined, the ethr gene encodes two subtypes of the receptor (ETHR-A and ETHR-B). Phylogenetic analysis showed that these receptors fall into a family of closely related GPCRs. We report for the first time the presence of putative ETHs and ETHRs in genomes of other arthropods, including the tick (Arachnida) and water flea (Crustacea). The possible source of ETH in ticks was detected in paired cells located in all pedal segments. Our results provide further evidence of structural and functional conservation of ETH-ETHR signaling.


The Journal of Comparative Neurology | 2011

Bombyx orcokinins are brain-gut peptides involved in the neuronal regulation of ecdysteroidogenesis.

Naoki Yamanaka; Ladislav Roller; Dušan Žitňan; Honoo Satake; Akira Mizoguchi; Hiroshi Kataoka; Yoshiaki Tanaka

Biosynthesis of ecdysteroids, the insect steroid hormones controlling gene expression during molting and metamorphosis, takes place primarily in the prothoracic gland (PG). The activity of the PG is regulated by various neuropeptides. In the silkworm Bombyx mori, these neuropeptides utilize both hormonal and neuronal pathways to regulate the activity of the PG, making the insect an excellent model system to investigate the complex signaling network controlling ecdysteroid biosynthesis. Here we report another group of neuropeptides, orcokinins, as neuronal prothoracicotropic factors. Using direct mass spectrometric profiling of the axons associated with the PG, we detected several peptide peaks which correspond to orcokinin gene products in addition to the previously described Bommo‐FMRFamides (BRFas). In situ hybridization and immunohistochemistry revealed that orcokinins are produced in the prominent neurosecretory cells in the ventral ganglia, as well as in numerous small neurons throughout the central nervous system and in midgut endocrine cells. One of the two pairs of BRFa‐expressing neurosecretory cells in the prothoracic ganglion coexpresses orcokinin, and these neurons project axons through the transverse nerve and terminate on the surface of the PG. Using an in vitro PG bioassay, we show that orcokinins have a clear prothoracicotropic activity and are able to cancel the static effect of BRFas on ecdysteroid biosynthesis, whereas the suppressive effect of BRFas on cAMP production remained unchanged in the presence of orcokinins. The discovery of a second regulator of PG activity in these neurons further illustrates the potential importance of the PG innervation in the regulation of insect development. J. Comp. Neurol. 519:238‐246, 2011.


PLOS ONE | 2011

Evidence for D1 dopamine receptor activation by a paracrine signal of dopamine in tick salivary glands.

Ladislav Šimo; Juraj Koči; Dušan Žitňan; Yoonseong Park

Ticks that feed on vertebrate hosts use their salivary secretion, which contains various bioactive components, to manipulate the hosts responses. The mechanisms controlling the tick salivary gland in this dynamic process are not well understood. We identified the tick D1 receptor activated by dopamine, a potent inducer of the salivary secretion of ticks. Temporal and spatial expression patterns examined by immunohistochemistry and reverse transcription polymerase chain reaction suggest that the dopamine produced in the basal cells of salivary gland acini is secreted into the lumen and activates the D1 receptors on the luminal surface of the cells lining the acini. Therefore, we propose a paracrine function of dopamine that is mediated by the D1 receptor in the salivary gland at an early phase of feeding. The molecular and pharmacological characterization of the D1 receptor in this study provides the foundation for understanding the functions of dopamine in the blood-feeding of ticks.


Cell and Tissue Research | 2009

Identification of a complex peptidergic neuroendocrine network in the hard tick, Rhipicephalus appendiculatus

Ladislav Šimo; Mirko Slovák; Yoonseong Park; Dušan Žitňan

Neuropeptides are crucial regulators of development and various physiological functions but little is known about their identity, expression and function in vectors of pathogens causing serious diseases, such as ticks. Therefore, we have used antibodies against multiple insect and crustacean neuropeptides to reveal the presence of these bioactive molecules in peptidergic neurons and cells of the ixodid tick Rhipicephalus appendiculatus. These antibodies have detected 15 different immunoreactive compounds expressed in specific central and peripheral neurons associated with the synganglion. Most central neurons arborize in distinct areas of the neuropile or the putative neurohaemal periganglionic sheath of the synganglion. Several large identified neurons in the synganglion project multiple processes through peripheral nerves to form elaborate axonal arborizations on the surface of salivary glands or to terminate in the lateral segmental organs (LSO). Additional neuropeptide immunoreactivity has been observed in intrinsic secretory cells of the LSO. We have also identified two novel clusters of peripheral neurons embedded in the cheliceral and paraspiracular nerves. These neurons project branching axons into the synganglion and into the periphery. Our study has thus revealed a complex network of central and peripheral peptidergic neurons, putative neurohaemal and neuromodulatory structures and endocrine cells in the tick comparable with those found in insect and crustacean neuroendocrine systems. Strong specific staining with a large variety of antibodies also indicates that the tick nervous system and adjacent secretory organs are rich sources of diverse neuropeptides related to those identified in insects, crustaceans or even vertebrates.


Journal of Insect Physiology | 2012

Neural control of salivary glands in ixodid ticks

Ladislav Šimo; Dušan Žitňan; Yoonseong Park

Studies of tick salivary glands (SGs) and their components have produced a number of interesting discoveries over the last four decades. However, the precise neural and physiological mechanisms controlling SG secretion remain enigmatic. Major studies of SG control have identified and characterized many pharmacological and biological compounds that activate salivary secretion, including dopamine (DA), octopamine, γ-aminobutyric acid (GABA), ergot alkaloids, pilocarpine (PC), and their pharmacological relatives. Specifically, DA has shown the most robust activities in various tick species, and its effect on downstream actions in the SGs has been extensively studied. Our recent work on a SG dopamine receptor has aided new interpretations of previous pharmacological studies and provided new concepts for SG control mechanisms. Furthermore, our recent studies have suggested that multiple neuropeptides are involved in SG control. Myoinhibitory peptide (MIP) and SIFamide have been identified in the neural projections reaching the basal cells of acini types II and III. Pigment-dispersing factor (PDF)-immunoreactive neural projections reach type II acini, and RFamide- and tachykinin-immunoreactive projections reach the SG ducts, but the chemical nature of the latter three immunoreactive substances are unidentified yet. Here, we briefly review previous pharmacological studies and provide a revised summary of SG control mechanisms in ticks.


Peptides | 2016

Expression of RYamide in the nervous and endocrine system of Bombyx mori

Ladislav Roller; Daniel Čižmár; Branislav Bednár; Dušan Žitňan

RYamides are neuropeptides encoded by a gene whose precise expression and function have not yet been determined. We identified the RYamide gene transcript (fmgV1g15f, SilkBase database) and predicted two candidates for G-protein coupled RYamide receptors (A19-BAG68418 and A22-BAG68421) in the silkworm Bombyx mori. We cloned the RYamide transcript and described its spatial expression using in situ hybridisation. In the larval central nervous system (CNS) expression of RYamide was restricted to 12-14 small neurons in the brain and two posterior neurons in the terminal abdominal ganglion. During metamorphosis their number decreased to eight protocerebral neurons in the adults. Multiple staining, using various insect neuropeptide antibodies, revealed that neurons expressing RYamide are different from other peptidergic cells in the CNS. We also found RYamide expression in the enteroendocrine cells (EC) of the anterior midgut of larvae, pupae and adults. Two minor subpopulations of these EC were also immunoreactive to antibodies against tachykinin and myosupressin. This expression pattern suggests RYamides may play a role in the regulation of feeding and digestion.


Cell and Tissue Research | 2016

Molecular cloning, expression and identification of the promoter regulatory region for the neuropeptide trissin in the nervous system of the silkmoth Bombyx mori

Ladislav Roller; Daniel Čižmár; Zuzana Gáliková; Branislav Bednár; Ivana Daubnerová; Dušan Žitňan

Trissin has recently been identified as a conserved insect neuropeptide, but its cellular expression and function is unknown. We detected the presence of this neuropeptide in the silkworm Bombyx mori using in silico search and molecular cloning. In situ hybridisation was used to examine trissin expression in the entire central nervous system (CNS) and gut of larvae, pupae and adults. Surprisingly, its expression is restricted to only two pairs of small protocerebral interneurons and four to five large neurons in the frontal ganglion (FG). These neurons were further characterised by subsequent multiple staining with selected antibodies against insect neuropeptides. The brain interneurons innervate edges of the mushroom bodies and co-express trissin with myoinhibitory peptides (MIP) and CRF-like diuretic hormones (CRF-DH). In the FG, one pair of neurons co-express trissin with calcitonin-like diuretic hormone (CT-DH), short neuropeptide F (sNPF) and MIP. These neurons innervate the brain tritocerebrum and musculature of the anterior midgut. The other pair of trissin neurons in the FG co-express sNPF and project axons to the tritocerebrum and midgut. We also used the baculovirus expression system to identify the promoter regulatory region of the trissin gene for targeted expression of various molecular markers in these neurons. Dominant expression of trissin in the FG indicates its possible role in the regulation of foregut–midgut contractions and food intake.

Collaboration


Dive into the Dušan Žitňan's collaboration.

Top Co-Authors

Avatar

Ladislav Roller

Slovak Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Ivana Daubnerová

Comenius University in Bratislava

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Inka Žitňanová

Comenius University in Bratislava

View shared research outputs
Top Co-Authors

Avatar

Branislav Bednár

Slovak Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Daniel Čižmár

Slovak Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge