Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dušanka Janežič is active.

Publication


Featured researches published by Dušanka Janežič.


Bioinformatics | 2010

ProBiS algorithm for detection of structurally similar protein binding sites by local structural alignment

Janez Konc; Dušanka Janežič

Motivation: Exploitation of locally similar 3D patterns of physicochemical properties on the surface of a protein for detection of binding sites that may lack sequence and global structural conservation. Results: An algorithm, ProBiS is described that detects structurally similar sites on protein surfaces by local surface structure alignment. It compares the query protein to members of a database of protein 3D structures and detects with sub-residue precision, structurally similar sites as patterns of physicochemical properties on the protein surface. Using an efficient maximum clique algorithm, the program identifies proteins that share local structural similarities with the query protein and generates structure-based alignments of these proteins with the query. Structural similarity scores are calculated for the query proteins surface residues, and are expressed as different colors on the query protein surface. The algorithm has been used successfully for the detection of protein–protein, protein–small ligand and protein–DNA binding sites. Availability: The software is available, as a web tool, free of charge for academic users at http://probis.cmm.ki.si Contact: [email protected] Supplementary information: Supplementary data are available at Bioinformatics online.


Journal of Computational Chemistry | 1995

Harmonic analysis of large systems. III. Comparison with molecular dynamics

Dušanka Janežič; Richard M. Venable; Bernard R. Brooks

Atomic motions in bovine pancreatic trypsin inhibitor (BPTI), derived from molecular dynamics, harmonic analysis, and quasiharmonic analysis, are compared when a single protein model, energy parameters, and environment are employed. Molecular dynamics (MD) was carried out for 2 nanoseconds. An average structure was determined from the last nanosecond of the MD simulation, when no major structural changes were observed. This structure was used for several harmonic analysis calculations as well as for a reference structure for the quasiharmonic analysis, for both full basis and reduced basis sets. In contrast to the harmonic analysis results, the quasiharmonic reduced basis calculation using a spherical harmonics reduced basis provided good agreement with the full basis calculation, suggesting that when anharmonic effects are considered, BPTI can behave as a homogeneous object. An extensive analysis of the normal modes from a diverse set of 201 minimized MD simulation frames was performed. On only the sub‐picosecond time scale were energy minima revisited after a transition to another state. This analysis shows that the dynamics average structure is not representative of the simulation frames in terms of energy and vibrational frequencies. For this model of BPTI, 42% of the motion (mean‐squared fluctuation) can be attributed to harmonic limit behavior. A spectral analysis of the correlation function of deformation for a particular normal mode or quasiharmonic mode can be used to determine the time scales of motions which correspond to harmonic vibration, large‐scale drift, or sharp transitions between local substrates.


Nucleic Acids Research | 2012

ProBiS-2012: web server and web services for detection of structurally similar binding sites in proteins

Janez Konc; Dušanka Janežič

The ProBiS web server is a web server for detection of structurally similar binding sites in the PDB and for local pairwise alignment of protein structures. In this article, we present a new version of the ProBiS web server that is 10 times faster than earlier versions, due to the efficient parallelization of the ProBiS algorithm, which now allows significantly faster comparison of a protein query against the PDB and reduces the calculation time for scanning the entire PDB from hours to minutes. It also features new web services, and an improved user interface. In addition, the new web server is united with the ProBiS-Database and thus provides instant access to pre-calculated protein similarity profiles for over 29 000 non-redundant protein structures. The ProBiS web server is particularly adept at detection of secondary binding sites in proteins. It is freely available at http://probis.cmm.ki.si/old-version, and the new ProBiS web server is at http://probis.cmm.ki.si.


Nucleic Acids Research | 2010

ProBiS: a web server for detection of structurally similar protein binding sites

Janez Konc; Dušanka Janežič

A web server, ProBiS, freely available at http://probis.cmm.ki.si, is presented. This provides access to the program ProBiS (Protein Binding Sites), which detects protein binding sites based on local structural alignments. Detailed instructions and user guidelines for use of ProBiS are available at the server under ‘HELP’ and selected examples are provided under ‘EXAMPLES’.


Journal of Chemical Physics | 2005

Molecular dynamics integration and molecular vibrational theory. I. New symplectic integrators

Dušanka Janežič; Matej Praprotnik; Franci Merzel

New symplectic integrators have been developed by combining molecular dynamics integration with the standard theory of molecular vibrations to solve the Hamiltonian equations of motion. The presented integrators analytically resolve the internal high-frequency molecular vibrations by introducing a translating and rotating internal coordinate system of a molecule and calculating normal modes of an isolated molecule only. The translation and rotation of a molecule are treated as vibrational motions with the vibrational frequency zero. All types of motion are thus described in terms of the normal coordinates. The methods time reversibility requirement was used to determine the equations of motion for internal coordinate system of a molecule. The calculation of long-range forces is performed numerically within the generalized second-order leap-frog scheme, in the same way as in standard second-order symplectic methods. The new methods for integrating classical equations of motion using normal mode analysis allow us to use a long integration step and are applicable to any system of molecules with one equilibrium configuration.


Journal of Chemical Information and Modeling | 2012

ProBiS-database: precalculated binding site similarities and local pairwise alignments of PDB structures.

Janez Konc; Tomo Česnik; Joanna Trykowska Konc; Matej Penca; Dušanka Janežič

ProBiS-Database is a searchable repository of precalculated local structural alignments in proteins detected by the ProBiS algorithm in the Protein Data Bank. Identification of functionally important binding regions of the protein is facilitated by structural similarity scores mapped to the query protein structure. PDB structures that have been aligned with a query protein may be rapidly retrieved from the ProBiS-Database, which is thus able to generate hypotheses concerning the roles of uncharacterized proteins. Presented with uncharacterized protein structure, ProBiS-Database can discern relationships between such a query protein and other better known proteins in the PDB. Fast access and a user-friendly graphical interface promote easy exploration of this database of over 420 million local structural alignments. The ProBiS-Database is updated weekly and is freely available online at http://probis.cmm.ki.si/database.


PLOS ONE | 2011

ENZO: a web tool for derivation and evaluation of kinetic models of enzyme catalyzed reactions.

Staš Bevc; Janez Konc; Jure Stojan; Milan Hodošček; Matej Penca; Matej Praprotnik; Dušanka Janežič

We describe a web tool ENZO (Enzyme Kinetics), a graphical interface for building kinetic models of enzyme catalyzed reactions. ENZO automatically generates the corresponding differential equations from a stipulated enzyme reaction scheme. These differential equations are processed by a numerical solver and a regression algorithm which fits the coefficients of differential equations to experimentally observed time course curves. ENZO allows rapid evaluation of rival reaction schemes and can be used for routine tests in enzyme kinetics. It is freely available as a web tool, at http://enzo.cmm.ki.si.


Journal of Chemical Information and Modeling | 2013

Exact parallel maximum clique algorithm for general and protein graphs.

Matjaž Depolli; Janez Konc; Kati Rozman; Roman Trobec; Dušanka Janežič

A new exact parallel maximum clique algorithm MaxCliquePara, which finds the maximum clique (the fully connected subgraph) in undirected general and protein graphs, is presented. First, a new branch and bound algorithm for finding a maximum clique on a single computer core, which builds on ideas presented in two published state of the art sequential algorithms is implemented. The new sequential MaxCliqueSeq algorithm is faster than the reference algorithms on both DIMACS benchmark graphs as well as on protein-derived product graphs used for protein structural comparisons. Next, the MaxCliqueSeq algorithm is parallelized by splitting the branch-and-bound search tree to multiple cores, resulting in MaxCliquePara algorithm. The ability to exploit all cores efficiently makes the new parallel MaxCliquePara algorithm markedly superior to other tested algorithms. On a 12-core computer, the parallelization provides up to 2 orders of magnitude faster execution on the large DIMACS benchmark graphs and up to an order of magnitude faster execution on protein product graphs. The algorithms are freely accessible on http://commsys.ijs.si/~matjaz/maxclique.


Nucleic Acids Research | 2014

ProBiS-ligands: a web server for prediction of ligands by examination of protein binding sites

Janez Konc; Dušanka Janežič

The ProBiS-ligands web server predicts binding of ligands to a protein structure. Starting with a protein structure or binding site, ProBiS-ligands first identifies template proteins in the Protein Data Bank that share similar binding sites. Based on the superimpositions of the query protein and the similar binding sites found, the server then transposes the ligand structures from those sites to the query protein. Such ligand prediction supports many activities, e.g. drug repurposing. The ProBiS-ligands web server, an extension of the ProBiS web server, is open and free to all users at http://probis.cmm.ki.si/ligands.


Journal of Chemical Physics | 2012

Individual degrees of freedom and the solvation properties of water

Urban Bren; Dušanka Janežič

Using molecular dynamics simulations in conjunction with home-developed Split Integration Symplectic Method we effectively decouple individual degrees of freedom of water molecules and connect them to corresponding thermostats. In this way, we facilitate elucidation of structural, dynamical, spectral, and hydration properties of bulk water at any given combination of rotational, translational, and vibrational temperatures. Elevated rotational temperature of the water medium is found to severely hinder hydration of polar molecules, to affect hydration of ionic species in a nonmonotonous way and to somewhat improve hydration of nonpolar species. As proteins consist of charged, polar, and nonpolar amino-acid residues, the developed methodology is also applied to critically evaluate the hypothesis that the overall decrease in protein hydration and the change in the subtle balance between hydration of various types of amino-acid residues provide a plausible physical mechanism through which microwaves enhance aberrant protein folding and aggregation.

Collaboration


Dive into the Dušanka Janežič's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Milan Hodoscek

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Roman Trobec

University of Ljubljana

View shared research outputs
Top Co-Authors

Avatar

Bernard R. Brooks

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ante Miličević

Hungarian Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge