Dusko S. Ehrlich
Institut national de la recherche agronomique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dusko S. Ehrlich.
Gut | 2013
Patricia Lepage; Marion Leclerc; Marie Joossens; Stanislas Mondot; Hervé M. Blottière; Jeroen Raes; Dusko S. Ehrlich; Joël Doré
Advances in sequencing technology and the development of metagenomic and bioinformatics methods have opened up new ways to investigate the 1014 microorganisms inhabiting the human gut. The gene composition of human gut microbiome in a large and deeply sequenced cohort highlighted an overall non-redundant genome size 150 times larger than the human genome. The in silico predictions based on metagenomic sequencing are now actively followed, compared and challenged using additional ‘omics’ technologies. Interactions between the microbiota and its host are of key interest in several pathologies and applying meta-omics to describe the human gut microbiome will give a better understanding of this crucial crosstalk at mucosal interfaces. Adding to the growing appreciation of the importance of the microbiome is the discovery that numerous phages, that is, viruses of prokaryotes infecting bacteria (bacteriophages) or archaea with a high host specificity, inhabit the human gut and impact microbial activity. In addition, gene exchanges within the gut microbiota have proved to be more frequent than anticipated. Taken together, these innovative exploratory technologies are expected to unravel new information networks critical for gut homeostasis and human health. Among the challenges faced, the in vivo validation of these networks, together with their integration into the prediction and prognosis of disease, may require further working hypothesis and collaborative efforts.
PLOS Biology | 2014
Nikos C. Kyrpides; Philip Hugenholtz; Jonathan A. Eisen; Tanja Woyke; Markus Göker; Charles Thomas Parker; Rudolf Amann; Brian Beck; Patrick Chain; Jongsik Chun; Rita R. Colwell; Antoine Danchin; Peter Dawyndt; Tom Dedeurwaerdere; Edward F. DeLong; John C. Detter; Paul De Vos; Timothy J. Donohue; Xiu Zhu Dong; Dusko S. Ehrlich; Claire M. Fraser; Richard A. Gibbs; Jack A. Gilbert; Paul Gilna; Frank Oliver Glöckner; Janet K. Jansson; Jay D. Keasling; Rob Knight; David P. Labeda; Alla Lapidus
This manuscript calls for an international effort to generate a comprehensive catalog from genome sequences of all the archaeal and bacterial type strains.
The EMBO Journal | 2002
Marie‐Agnès Petit; Dusko S. Ehrlich
PcrA, Rep and UvrD are three closely related bacterial helicases with a DExx signature. PcrA is encoded by Gram‐positive bacteria and is essential for cell growth. Rep and UvrD are encoded by Gram‐negative bacteria, and mutants lacking both helicases are also not viable. To understand the non‐viability of the helicase mutants, we characterized spontaneous extragenic suppressors of a Bacillus subtilis pcrA null mutation. Here we report that one of these suppressors maps in recF and that previously isolated mutations in B.subtilis recF, recL, recO and recR, which belong to the same complementation group, all suppress the lethality of a pcrA mutation. Similarly, recF, recO or recR mutations suppress the lethality of the Escherichia coli rep uvrD double mutant. We conclude that RecFOR proteins are toxic in cells devoid of PcrA in Gram‐positive bacteria, or Rep and UvrD in Gram‐negative bacteria, and propose that the RecFOR proteins interfere with an essential cellular process, possibly replication, when DExx helicases PcrA, or Rep and UvrD are absent.
Molecular Microbiology | 2004
Dina Petranovic; Eric Guédon; Brice Sperandio; Christine Delorme; Dusko S. Ehrlich; Pierre Renault
CodY is a pleiotropic transcriptional regulator conserved in low‐G+C Gram‐positive bacteria. Two distinct signals have been shown independently to influence the activity of this regulator: the level of intracellular GTP in Bacillus subtilis and the level of intracellular branched‐chain amino acids (BCAA) isoleucine, leucine and valine in Lactococcus lactis. Measurement of BCAA and GTP levels in several environmental conditions showed that L. lactis CodY responded to the intracellular BCAA concentrations but not to physiological fluctuations in intracellular GTP. In addition, we demonstrated that CodY from L. lactis did not respond to intracellular GTP even when complementing CodY activity in B. subtilis. However, L. lactis CodY activity could still be modulated in B. subtilis by adding a rich nitrogen source to the growth media. This finding suggests that only BCAA are sensed by L. lactis CodY, whereas both GTP and BCAA signals may be integrated by B. subtilis CodY. The difference in the function of CodY from B. subtilis and L. lactis seems to reflect the difference in the physiology of these two bacteria.
Proteomics | 2009
Aleksandr Barinov; Valentin Loux; Amal Hammani; Pierre Nicolas; Philippe Langella; Dusko S. Ehrlich; Emmanuelle Maguin; Maarten van de Guchte
The in silico prediction of bacterial surface exposed proteins is of growing interest for the rational development of vaccines and in the study of bacteria–host relationships, whether pathogenic or host beneficial. This interest is driven by the increase in the use of DNA sequencing as a major tool in the early characterization of pathogenic bacteria and, more recently, even of complex ecosystems at the host–environment interface in metagenomics approaches. Current protein localization protocols are not suited to this prediction task as they ignore the potential surface exposition of many membrane‐associated proteins. Therefore, we developed a new flow scheme, SurfG+, for the processing of protein sequence data with the particular aim of identification of potentially surface exposed (PSE) proteins from Gram‐positive bacteria, which was validated for Streptococcus pyogenes. The results of an exploratory case study on closely related lactobacilli of the acidophilus group suggest that the yogurt bacterium Lactobacillus delbrueckii ssp. bulgaricus (L. bulgaricus) dedicates a relatively important fraction of its coding capacity to secreted proteins, while the probiotic gastrointestinal (GI) tract bacteria L. johnsonii and L. gasseri appear to encode a larger variety of PSE proteins, that may play a role in the interaction with the host.
Journal of Bacteriology | 2005
Brice Sperandio; Patrice Polard; Dusko S. Ehrlich; Pierre Renault; Eric Guédon
Cysteine and methionine availability influences many processes in the cell. In bacteria, transcription of the specific genes involved in the synthesis of these two amino acids is usually regulated by different mechanisms or regulators. Pathways for the synthesis of cysteine and methionine and their interconversion were experimentally determined for Lactococcus lactis, a lactic acid bacterium commonly found in food. A new gene, yhcE, was shown to be involved in methionine recycling to cysteine. Surprisingly, 18 genes, representing almost all genes of these pathways, are under the control of a LysR-type activator, FhuR, also named CmbR. DNA microarray experiments showed that FhuR targets are restricted to this set of 18 genes clustered in seven transcriptional units, while cysteine starvation modifies the transcription level of several other genes potentially involved in oxidoreduction processes. Purified FhuR binds a 13-bp box centered 46 to 53 bp upstream of the transcriptional starts from the seven regulated promoters, while a second box with the same consensus is present upstream of the first binding box, separated by 8 to 10 bp. O-Acetyl serine increases FhuR binding affinity to its binding boxes. The overall view of sulfur amino acid metabolism and its regulation in L. lactis indicates that CysE could be a master enzyme controlling the activity of FhuR by providing its effector, while other controls at the enzymatic level appear to be necessary to compensate the absence of differential regulation of the genes involved in the interconversion of methionine and cysteine and other biosynthesis genes.
Journal of Bacteriology | 2007
Zoran Minic; Corinne Marie; Christine Delorme; Jean-Michel Faurie; Gérald Mercier; Dusko S. Ehrlich; Pierre Renault
We studied the roles of Streptococcus thermophilus phosphogalactosyltransferase (EpsE) (the priming enzyme), tyrosine kinase (EpsD), phosphatase (EpsB), and a membrane-associated protein with no known biochemical function (EpsC) in exopolysaccharide (EPS) synthesis. These proteins are well-conserved among bacteria and are usually encoded by clustered genes. Exopolysaccharide synthesis took place in the wild-type strain and a mutant lacking EpsB but not in mutants lacking EpsC, EpsD, or EpsE. The three mutants unable to synthesize EPS lacked the EpsE phosphogalactosyltransferase activity, while the two EPS-synthesizing strains possessed this activity, showing that EpsC and EpsD are required for EpsE function. An EpsD phosphorylated form was found in all strains except the epsC mutant, indicating that EpsC is necessary for EpsD phosphorylation. Moreover, the phosphorylated form of EpsD, a supposedly cytoplasmic protein, was found to be associated with the plasma membrane, possibly due to interaction with EpsC. Finally, the EpsD and EpsE elution profiles in a gel filtration chromatography assay were similar, suggesting that these two proteins colocalize in the membrane. Mutation of Tyr200, predicted to be a phosphorylation site and present in a conserved motif in bacterial phosphoglycosyltransferases, led to EpsE inactivation. In contrast, mutation of Tyr162 or Tyr199 had no effect. Taken together, these data show that EpsD controls EpsE activity. Possible mechanisms for this control are discussed.
Journal of Bacteriology | 2005
Charlotte Barrière; Maria Veiga-da-Cunha; Nicolas Pons; Eric Guédon; Sacha A. F. T. van Hijum; Jan Kok; Oscar P. Kuipers; Dusko S. Ehrlich; Pierre Renault
In addition to its role as carbon and energy source, fructose metabolism was reported to affect other cellular processes, such as biofilm formation by streptococci and bacterial pathogenicity in plants. Fructose genes encoding a 1-phosphofructokinase and a phosphotransferase system (PTS) fructose-specific enzyme IIABC component reside commonly in a gene cluster with a DeoR family regulator in various gram-positive bacteria. We present a comprehensive study of fructose metabolism in Lactococcus lactis, including a systematic study of fru mutants, global messenger analysis, and a molecular characterization of its regulation. The fru operon is regulated at the transcriptional level by both FruR and CcpA and at the metabolic level by inducer exclusion. The FruR effector is fructose-1-phosphate (F1P), as shown by combined analysis of transcription and measurements of the intracellular F1P pools in mutants either unable to produce this metabolite or accumulating it. The regulation of the fru operon by FruR requires four adjacent 10-bp direct repeats. The well-conserved organization of the fru promoter region in various low-GC gram-positive bacteria, including CRE boxes as well as the newly defined FruR motif, suggests that the regulation scheme defined in L. lactis could be applied to these bacteria. Transcriptome profiling of fruR and fruC mutants revealed that the effect of F1P and FruR regulation is limited to the fru operon in L. lactis. This result is enforced by the fact that no other targets for FruR were found in the available low-GC gram-positive bacteria genomes, suggesting that additional phenotypical effects due to fructose metabolism do not rely directly on FruR control, but rather on metabolism.
Proteomics | 2008
Annabelle Fernandez; Jun Ogawa; S. Penaud; Samira Boudebbouze; Dusko S. Ehrlich; Maarten van de Guchte; Emmanuelle Maguin
Lactic acid bacteria (LAB) gradually acidify their environment through the conversion of pyruvate to lactate, an essential process to regenerate NAD+ used during glycolysis. A clear demonstration of acidification can be found in yogurt, the product of milk fermentation by the LAB Lactobacillus delbrueckii ssp. bulgaricus (L. bulgaricus) and Streptococcus thermophilus, where the pH falls to 4.2. Acid adaptation therefore plays an important role in the physiology of LAB. Here we present the results of a proteomic approach to reveal cellular changes associated with acid adaptation in L. bulgaricus. These results were complemented with transcription data for selected genes to show three major effects: (i) induction of the chaperones GroES, GroEL, HrcA, GrpE, DnaK, DnaJ, ClpE, ClpP, and ClpL, and the repression of ClpC; (ii) induction of genes involved in the biosynthesis of fatty acids (fabH, accC, fabI); (iii) repression of genes involved in the mevalonate pathway of isoprenoid synthesis (mvaC, mvaS). Together with changes in the expression of other genes from the local metabolic network, these results for the first time show a coherent picture of changes in gene expression expected to result in a rerouting of pyruvate metabolism to favor fatty acid biosynthesis, and thereby affect membrane fluidity.
Molecular Microbiology | 1995
Marie-Agnès Petit; Dusko S. Ehrlich; Laurent Jannière
The broad‐host‐range plasmid pAMβ1 from Gram‐positive bacteria encodes a resolvase, designated Resβ, which shares homology with the proteins of the resolvase—invertase family. Here we report the purification and in vitro characterization of Resβ. This resolvase is particular in two aspects: it has an atypical binding site and requires a cofactor to promote resolution in vitro. Resβ binds to two regions within its resolution site res. One contains two inverted repeats (R1 and R2), the other contains only one repeat (R3). The cofactor required for resolution in vitro is present in crude extracts of both Bacillus subtilis and Escherichia coli and can be substituted by the E. coli histone‐like protein HU. The possible mode of action of HU in the resolution process is discussed.