Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dustin K. Reed is active.

Publication


Featured researches published by Dustin K. Reed.


Nephrology Dialysis Transplantation | 2013

Chronic nicotine exposure augments renal oxidative stress and injury through transcriptional activation of p66shc

Istvan Arany; Jeb S. Clark; Dustin K. Reed; Luis A. Juncos

BACKGROUND Chronic nicotine (Ch-NIC) exposure exacerbates ischemia/reperfusion (I/R)-induced oxidative stress and acute kidney injury (AKI), and mitochondrial production of reactive oxygen species (ROS) in cultured renal proximal tubule cells (RPTCs). Because Ser36-phosphorylated p66shc modulates mitochondrial ROS production and injury of RPTCs, we hypothesized that Ch-NIC exacerbates AKI by increasing stress-induced phosphorylation of p66shc. METHODS We first tested whether Ch-NIC augments I/R-AKI-induced expression and phosphorylation of p66shc in vivo. We then examined whether knocking down p66shc, or impairing its Ser36 phosphorylation or binding to cytochrome c, alters the effects of Ch-NIC on oxidative stress (H₂O₂)-induced production of ROS, mitochondrial depolarization and injury in RPTCs in vitro. RESULTS We found that Ch-NIC increased the expression of p66shc in the control and ischemic kidneys, but only increased its Ser36 phosphorylation after renal I/R. Knocking down p66shc or impairing phosphorylation of its Ser36 residue, via the S36A mutation (but not the phosphomimetic S36D mutation), blunted Ch-NIC + H2O2-dependent ROS production, mitochondrial depolarization and injury in RPTCs. Additionally, Ch-NIC + H2O2-dependent binding of p66shc to mitochondrial cytochrome c was attenuated by S36A mutation of p66shc, and impairing cytochrome c binding (via W134F mutation) abolished ROS production, mitochondrial depolarization and injury, while ectopic overexpression of p66shc (which mimics Ch-NIC treatment) augmented oxidant injury. We determined that Ch-NIC stimulates the p66shc promoter through p53- and epigenetic modification (promoter hypomethylation). CONCLUSIONS Ch-NIC worsens oxidative stress-dependent acute renal injury by increasing expression and consequent oxidative stress-dependent Ser36 phosphorylation of p66shc. Thus, targeting this pathway may have therapeutic relevance in preventing/ameliorating tobacco-related kidney injury.


American Journal of Physiology-renal Physiology | 2012

A novel U-STAT3-dependent mechanism mediates the deleterious effects of chronic nicotine exposure on renal injury.

Istvan Arany; Dustin K. Reed; Samira C. Grifoni; Kiran Chandrashekar; George W. Booz; Luis A. Juncos

Previous data from our group have demonstrated (Arany I, Grifoni S, Clark JS, Csongradi, Maric C, Juncos LA. Am J Physiol Renal Physiol 301: F125-F133, 2011) that chronic nicotine (NIC) exposure exacerbates acute renal ischemic injury (AKI) in mice that could increase the risk for development and progression of chronic kidney disease (CKD). It has been shown that proximal tubules of the kidney can acquire characteristics that may compromise structural recovery and favor development of inflammation and fibrosis following injury. Chronic NIC exposure can amplify this epithelial process although the mechanism is not identified. Recently, the unphosphorylated form of signal transducer and activator of transcription-3 (U-STAT3) has emerged as a noncanonical mediator of inflammation and fibrosis that may be responsible for the effects of chronic NIC. We found that levels of transforming growth factor β-1 (TGF-β1), α-smooth muscle actin (α-SMA), fibronectin, monocyte chemotactic protein-1 (MCP-1), and expression of U-STAT3 were increased in the ischemic kidneys of NIC-exposed mice. Chronic NIC exposure also increased TGF-β1-dependent F-actin reorganization, vimentin, fibronectin, and α-SMA expression as well as promoter activity of α-SMA and MCP-1 without significant loss of epithelial characteristics (E-cadherin) in cultured renal proximal tubule cells. Importantly, transduction of cells with a U-STAT3 mimetic (Y705F-STAT3) augmented stress fiber formation and also amplified NIC+TGF-β1-induced expression of α-SMA, vimentin, fibronectin, as well as promoter activity of α-SMA and MCP-1. Our results reveal a novel, chronic NIC-exposure-related and U-STAT3-dependent mechanism as mediator of a sustained transcription of genes that are linked to remodeling and inflammation in the kidney during injury. This process may facilitate progression of AKI to CKD. The obtained data may lead to devising therapeutic methods to specifically enhance the protective and/or inhibit adverse effects of STAT3 in the kidney.


American Journal of Nephrology | 2013

Role of p66shc in Renal Toxicity of Oleic Acid

Istvan Arany; Jeb S. Clark; Dustin K. Reed; Luis A. Juncos; Mehul Dixit

Background/Aims: Adult and childhood obesity is an independent risk factor in development of chronic kidney disease (CKD) and its progression to end-stage kidney disease. Pathologic consequences of obesity include non-esterified fatty acid-induced oxidative stress and consequent injury. Since the serine36-phosphorylated p66shc is a newly recognized mediator of oxidative stress and kidney injury, we studied its role in oleic acid (OA)-induced production of reactive oxygen species (ROS), mitochondrial depolarization and injury in cultured renal proximal tubule cells. Methods: Renal proximal tubule cells were used and treated with OA: ROS production, mitochondrial depolarization as well as injury were determined. Transcriptional effects of OA on the p66shc gene were determined in a reporter luciferase assay. The role of p66shc in adverse effects of OA was determined using knockdown, p66shc serine36 phosphorylation and cytochrome c binding-deficient cells. Results: We found that OA increased ROS production via the mitochondria - and to a less extent via the NADPH oxidase - resulting in ROS-dependent mitochondrial depolarization and consequent injury. Interestingly, OA also stimulated the promoter of p66shc. Hence, knockdown of p66shc, impairment its Ser36 phosphorylation (mutation of Ser36 residue to alanine) or cytochrome c binding (W134F mutation) significantly attenuated OA-dependent lipotoxicity. Conclusion: These results offer a novel mechanism by which obesity may lead to renal tubular injury and consequently development of CKD. Manipulation of this pathway may offer therapeutic means to ameliorate obesity-dependent renal lipotoxicity.


Nicotine & Tobacco Research | 2016

Nicotine Enhances High-Fat Diet-Induced Oxidative Stress in the Kidney

Istvan Arany; Samuel Hall; Dustin K. Reed; Caitlyn Reed; Mehul Dixit

INTRODUCTION Life expectancy of an obese smoker is 13 years less than a normal weight smoker, which could be linked to the increased renal risk imposed by smoking. Both smoking-through nicotine (NIC)-and obesity-by free fatty acid overload-provoke oxidative stress in the kidney, which ultimately results in development of chronic kidney injury. Their combined renal risk, however, is virtually unknown. We tested the hypothesis that chronic NIC exposure worsens renal oxidative stress in mice on high-fat diet (HFD) by altering the balance between expression of pro-oxidant and antioxidant genes. METHODS Nine-week-old male C57Bl/6J mice consumed normal diet (ND) or HFD and received either NIC (200 μg/ml) or vehicle (2% saccharine) in their drinking water. Body weight, plasma clinical parameters, renal lipid deposition, markers of renal oxidative stress and injury, as well as renal expression of the pro-oxidant p66shc and the antioxidant MnSOD were determined after 12 weeks. RESULTS NIC significantly augmented levels of circulating free fatty acid, as well as lipid deposition, oxidative stress and sublethal injury in the kidneys of mice on HFD. In addition, NIC exposure suppressed HFD-mediated induction of MnSOD while increased expression of p66shc in the kidney. CONCLUSIONS Tobacco smoking or the increasingly popular E-cigarettes-via NIC exposure-could worsen obesity-associated lipotoxicity in the kidney. Hence, our findings could help to develop strategies that mitigate adverse effects of NIC on the obese kidney. IMPLICATIONS Life expectancy of an obese smoker is 13 years less than a normal weight smoker, which could be linked to the increased renal risk imposed by smoking. NIC-the main component of tobacco smoke, E-cigarettes and replacement therapies-links smoking to renal injury via oxidative stress, which could superimpose renal oxidative stress caused by obesity. Our results substantiate this scenario using a mouse model of diet induced obesity and NIC exposure and imply the augmented long-term renal risk in obese smokers. Also, our study may help to develop strategies that mitigate adverse effects of NIC on the obese kidney.


Journal of Physiology and Biochemistry | 2015

α-Tocopherol protects renal cells from nicotine- or oleic acid-provoked oxidative stress via inducing heme oxygenase-1

Dustin K. Reed; Samuel Hall; Istvan Arany

Smoking and obesity increases renal oxidative stress via nicotine (NIC) or free fatty acid such as oleic acid (OA) but decreases levels of the vitamin E-derivative α-tocopherol (TOC), which has shown to stimulate the antioxidant system such as heme oxygenase-1 (HO-1). Hence, we hypothesized that supplementation of TOC may protect renal proximal tubules from NIC- or OA-mediated oxidative stress by upregulating the HO-1 gene. NIC- or OA-dependent production of reactive oxygen species (ROS) was determined in the presence or absence of various pharmacologic or genetic inhibitors that modulate HO-1 activation and enhancer elements in the HO-1 promoter such as the antioxidant response element (ARE) and the cAMP-response element (CRE) in renal proximal tubule cells (NRK52E). Activity of the HO-1 promoter, the ARE and the CRE was determined in luciferase assays. We found that pre- or posttreatment with TOC attenuated NIC- or OA-dependent ROS production that required HO-1 activation. TOC activated the HO-1 promoter via the CRE but not the ARE enhancer through the extracellular signal-regulated kinase (ERK) and protein kinase A (PKA). Consequently, inhibitors of ERK, PKA, or CRE activation mitigated beneficial effects of TOC on NIC- or OA-mediated ROS production. Hence, vitamin E supplementation—via induction of the cytoprotective HO-1—may help to reduce renal oxidative stress imposed by smoking or obesity.


Anticancer Research | 2012

Cisplatin enhances interaction between p66Shc and HSP27: its role in reorganization of the actin cytoskeleton in renal proximal tubule cells.

Istvan Arany; Jeb S. Clark; Dustin K. Reed; István Ember; Luis A. Juncos


Molecular Medicine Reports | 2016

The pro-oxidant gene p66shc increases nicotine exposure-induced lipotoxic oxidative stress in renal proximal tubule cells

Istvan Arany; Samuel Hall; Dustin K. Reed; Mehul Dixit


in Vivo | 2014

p66shc and gender-specific dimorphism in acute renal injury.

Dustin K. Reed; Istvan Arany


Anticancer Research | 2013

The role of p66shc in taxol- and dichloroacetic acid-dependent renal toxicity

Istvan Arany; Jeb S. Clark; Dustin K. Reed; István Szabó; István Ember; Luis A. Juncos


in Vivo | 2014

Sex hormones differentially modulate STAT3-dependent antioxidant responses during oxidative stress in renal proximal tubule cells.

Dustin K. Reed; Istvan Arany

Collaboration


Dive into the Dustin K. Reed's collaboration.

Top Co-Authors

Avatar

Istvan Arany

University of Mississippi Medical Center

View shared research outputs
Top Co-Authors

Avatar

Luis A. Juncos

University of Mississippi Medical Center

View shared research outputs
Top Co-Authors

Avatar

Jeb S. Clark

University of Mississippi Medical Center

View shared research outputs
Top Co-Authors

Avatar

Mehul Dixit

University of Mississippi Medical Center

View shared research outputs
Top Co-Authors

Avatar

Samuel Hall

University of Mississippi Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anthony Carter

University of Mississippi Medical Center

View shared research outputs
Top Co-Authors

Avatar

Caitlyn Reed

University of Mississippi Medical Center

View shared research outputs
Top Co-Authors

Avatar

George W. Booz

University of Mississippi Medical Center

View shared research outputs
Top Co-Authors

Avatar

Kiran Chandrashekar

University of Mississippi Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge