Dustin R. Masser
University of Oklahoma Health Sciences Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dustin R. Masser.
Epigenetics & Chromatin | 2013
Dustin R. Masser; Arthur Berg; Willard M. Freeman
BackgroundThe growing interest in the role of epigenetic modifications in human health and disease has led to the development of next-generation sequencing methods for whole genome analysis of DNA methylation patterns. However, many projects require targeted methylation analysis of specific genes or genomic regions. We have developed an approach, termed BiSulfite Amplicon Sequencing (BSAS), for hypothesis driven and focused absolute DNA methylation analysis. This approach is applicable both to targeted DNA methylation studies as well as to confirmation of genome-wide studies.ResultsBSAS uses PCR enrichment of targeted regions from bisulfite-converted DNA and transposome-mediated library construction for rapid generation of sequencing libraries from low (1 ng) sample input. Libraries are sequenced using the Illumina MiSeq benchtop sequencer. Generating high levels of sequencing depth (>1,000 ×) provides for quantitatively precise and accurate assessment of DNA methylation levels with base specificity. Dual indexing of sequencing libraries allows for simultaneous analysis of up to 96 samples. We demonstrate the superior quantitative accuracy of this approach as compared to existing Sanger sequencing methods.ConclusionsBSAS can be applied to any genomic region from any DNA source, including tissue and cell culture. Thus, BSAS provides a new validation approach for rapid and highly quantitative absolute CpG methylation analysis of any targeted genomic regions in a high throughput manner.
Journal of Visualized Experiments | 2015
Dustin R. Masser; David R. Stanford; Willard M. Freeman
The role of epigenetic processes in the control of gene expression has been known for a number of years. DNA methylation at cytosine residues is of particular interest for epigenetic studies as it has been demonstrated to be both a long lasting and a dynamic regulator of gene expression. Efforts to examine epigenetic changes in health and disease have been hindered by the lack of high-throughput, quantitatively accurate methods. With the advent and popularization of next-generation sequencing (NGS) technologies, these tools are now being applied to epigenomics in addition to existing genomic and transcriptomic methodologies. For epigenetic investigations of cytosine methylation where regions of interest, such as specific gene promoters or CpG islands, have been identified and there is a need to examine significant numbers of samples with high quantitative accuracy, we have developed a method called Bisulfite Amplicon Sequencing (BSAS). This method combines bisulfite conversion with targeted amplification of regions of interest, transposome-mediated library construction and benchtop NGS. BSAS offers a rapid and efficient method for analysis of up to 10 kb of targeted regions in up to 96 samples at a time that can be performed by most research groups with basic molecular biology skills. The results provide absolute quantitation of cytosine methylation with base specificity. BSAS can be applied to any genomic region from any DNA source. This method is useful for hypothesis testing studies of target regions of interest as well as confirmation of regions identified in genome-wide methylation analyses such as whole genome bisulfite sequencing, reduced representation bisulfite sequencing, and methylated DNA immunoprecipitation sequencing.
Epigenetics & Chromatin | 2016
Niran Hadad; Dustin R. Masser; Sreemathi Logan; Benjamin Wronowski; Colleen A. Mangold; Nicholas W. Clark; Laura Otalora; Archana Unnikrishnan; Matthew M. Ford; Cory B. Giles; Jonathan D. Wren; Arlan Richardson; William E. Sonntag; David R. Stanford; Willard M. Freeman
BackgroundChanges to the epigenome with aging, and DNA modifications in particular, have been proposed as a central regulator of the aging process, a predictor of mortality, and a contributor to the pathogenesis of age-related diseases. In the central nervous system, control of learning and memory, neurogenesis, and plasticity require changes in cytosine methylation and hydroxymethylation. Although genome-wide decreases in methylation with aging are often reported as scientific dogma, primary research reports describe decreases, increases, or lack of change in methylation and hydroxymethylation and their principle regulators, DNA methyltransferases and ten-eleven translocation dioxygenases in the hippocampus. Furthermore, existing data are limited to only male animals.ResultsThrough examination of the hippocampus in young, adult, and old male and female mice by antibody-based, pyrosequencing, and whole-genome oxidative bisulfite sequencing methods, we provide compelling evidence that contradicts the genomic hypomethylation theory of aging. We also demonstrate that expression of DNA methyltransferases and ten-eleven translocation dioxygenases is not differentially regulated with aging or between the sexes, including the proposed cognitive aging regulator DNMT3a2. Using oxidative bisulfite sequencing that discriminates methylation from hydroxymethylation and by cytosine (CG and non-CG) context, we observe sex differences in average CG methylation and hydroxymethylation of the X chromosome, and small age-related differences in hydroxymethylation of CG island shores and shelves, and methylation of promoter regions.ConclusionThese findings clarify a long-standing misconception of the epigenomic response to aging and demonstrate the need for studies of base-specific methylation and hydroxymethylation with aging in both sexes.
Journals of Gerontology Series A-biological Sciences and Medical Sciences | 2014
Dustin R. Masser; Georgina V. Bixler; Robert M. Brucklacher; Han Yan; Cory B. Giles; Jonathan D. Wren; William E. Sonntag; Willard M. Freeman
Impairment of hippocampal-dependent spatial learning and memory with aging affects a large segment of the aged population. Hippocampal subregions (CA1, CA3, and DG) have been previously reported to express both common and specific morphological, functional, and gene/protein alterations with aging and cognitive decline. To comprehensively assess gene expression with aging and cognitive decline, transcriptomic analysis of CA1, CA3, and DG was conducted using Adult (12M) and Aged (26M) F344xBN rats behaviorally characterized by Morris water maze performance. Each subregion demonstrated a specific pattern of responses with aging and with cognitive performance. The CA1 and CA3 demonstrating the greatest degree of shared gene expression changes. Analysis of the pathways, processes, and regulators of these transcriptomic changes also exhibit a similar pattern of commonalities and differences across subregions. Gene expression changes between Aged cognitively Intact and Aged cognitively Impaired rats often showed an inversion of the changes between Adult and Aged rats. This failure to adapt rather than an exacerbation of the aging phenotype questions a conventional view that cognitive decline is exaggerated aging. These results are a resource for investigators studying cognitive decline and also demonstrate the need to individually examine hippocampal subregions in molecular analyses of aging and cognitive decline.
Journals of Gerontology Series A-biological Sciences and Medical Sciences | 2017
Colleen A. Mangold; Dustin R. Masser; David R. Stanford; Georgina V. Bixler; Aditya Pisupati; Cory B. Giles; Jonathan D. Wren; Matthew M. Ford; William E. Sonntag; Willard M. Freeman
The major histocompatibility complex I (MHCI) pathway, which canonically functions in innate immune viral antigen presentation and detection, is functionally pleiotropic in the central nervous system (CNS). Alternative roles include developmental synapse pruning, regulation of synaptic plasticity, and inhibition of neuronal insulin signaling; all processes altered during brain aging. Upregulation of MHCI components with aging has been reported; however, no systematic examination of MHCI cellular localization, expression, and regulation across CNS regions, life span, and sexes has been reported. In the mouse, MHCI is expressed by neurons and microglia, and MHCI components and receptors (H2-K1, H2-D1, &bgr;2M, Lilrb3, Klra2, CD247) display markedly different expression profiles across the hippocampus, cortex, cerebellum, brainstem, and retina. MHCI components, receptors, associated inflammatory transcripts (IL1&agr;, IL1&bgr;, IL6, TNF&agr;), and TAP (transporter associated with antigen processing) components are induced with aging and to a greater degree in female than male mice across CNS regions. H2-K1 and H2-D1 expression is associated with differential CG and non-CG promoter methylation across CNS regions, ages, and between sexes, and concomitant increased expression of proinflammatory genes. Meta-analysis of human brain aging data also demonstrates age-related increases in MHCI. Induction of MHCI signaling could contribute to altered synapse regulation and impaired synaptic plasticity with aging.
Experimental Eye Research | 2014
Dustin R. Masser; Heather D. VanGuilder Starkey; Georgina V. Bixler; Wendy Dunton; Sarah K. Bronson; Willard M. Freeman
Diabetic retinopathy is one of the leading causes of blindness in developed countries, and a majority of patients with type I and type II diabetes will develop some degree of vision loss despite blood glucose control regimens. The effects of different insulin therapy regimens on early metabolic, inflammatory and neuronal retinal disease processes such as retinal neuroinflammation and synapse loss have not been extensively investigated. This study compared 3 months non-diabetic and streptozotocin (STZ)-induced diabetic Sprague Dawley rats. Diabetic rats received either no insulin treatment, systemic insulin treatment beginning after 1 week uncontrolled diabetes (early intervention, 11 weeks on insulin), or after 1.5 months uncontrolled diabetes (late intervention, 6 weeks on insulin). Changes in both whole animal metabolic and retinal inflammatory markers were prevented by early initiation of insulin treatment. These metabolic and inflammatory changes were also normalized by the later insulin intervention. Insulin treatment begun 1 week after diabetes induction ameliorated loss of retinal synapse markers. Synapse markers and presumably synapse numbers were equivalent in uncontrolled diabetes and when insulin treatment began at 1.5 months of diabetes. These findings are in agreement with previous demonstrations that retinal synapses are lost within 1 month of uncontrolled diabetes and suggest that synapses are not regained with glycemic control and restoration of insulin signaling. However, increased expression of metabolic and inflammatory markers associated with diabetes was reversed in both groups of insulin treatment. This study also emphasizes the need for insulin treatment groups in diabetic retinopathy studies to provide a more faithful modeling of the human condition.
Brain Research Bulletin | 2016
Caesar G. Imperio; Ashley J. McFalls; Elizabeth M. Colechio; Dustin R. Masser; Kent E. Vrana; Patricia S. Grigson; Willard M. Freeman
Heroin addiction is a disease of chronic relapse that harms the individual through devaluation of personal responsibilities in favor of finding and using drugs. Only some recreational heroin users devolve into addiction but the basis of these individual differences is not known. We have shown in rats that avoidance of a heroin-paired taste cue reliably identifies individual animals with greater addiction-like behavior for heroin. Here rats received 5min access to a 0.15% saccharin solution followed by the opportunity to self-administer either saline or heroin for 6h. Large Suppressors of the heroin-paired taste cue displayed increased drug escalation, motivation for drug, and drug loading behavior compared with Small Suppressors. Little is known about the molecular mechanisms of these individual differences in addiction-like behavior. We examined the individual differences in mRNA expression in the nucleus accumbens (NAc) of rats that were behaviorally stratified by addiction-like behavior using next-generation sequencing. We hypothesized that based on the avoidance of the drug-paired cue there will be a unique mRNA profile in the NAc. Analysis of strand-specific whole genome RNA-Seq data revealed a number of genes differentially regulated in NAc based on the suppression of the natural saccharine reward. Large Suppressors exhibited a unique mRNA prolife compared to Saline controls and Small Suppressors. Genes related to immunity, neuronal activity, and behavior were differentially expressed among the 3 groups. In total, individual differences in avoidance of a heroin-paired taste cue are associated with addiction-like behavior along with differential NAc gene expression.
Molecular metabolism | 2018
Sreemathi Logan; Gavin Pharaoh; M. Caleb Marlin; Dustin R. Masser; Satoshi Matsuzaki; Benjamin Wronowski; Alexander Yeganeh; Eileen E. Parks; Pavithra Premkumar; Julie A. Farley; Daniel Owen; Kenneth M. Humphries; Michael Kinter; Willard M. Freeman; Luke I. Szweda; Holly Van Remmen; William E. Sonntag
Objective A decline in mitochondrial function and biogenesis as well as increased reactive oxygen species (ROS) are important determinants of aging. With advancing age, there is a concomitant reduction in circulating levels of insulin-like growth factor-1 (IGF-1) that is closely associated with neuronal aging and neurodegeneration. In this study, we investigated the effect of the decline in IGF-1 signaling with age on astrocyte mitochondrial metabolism and astrocyte function and its association with learning and memory. Methods Learning and memory was assessed using the radial arm water maze in young and old mice as well as tamoxifen-inducible astrocyte-specific knockout of IGFR (GFAP-CreTAM/igfrf/f). The impact of IGF-1 signaling on mitochondrial function was evaluated using primary astrocyte cultures from igfrf/f mice using AAV-Cre mediated knockdown using Oroboros respirometry and Seahorse assays. Results Our results indicate that a reduction in IGF-1 receptor (IGFR) expression with age is associated with decline in hippocampal-dependent learning and increased gliosis. Astrocyte-specific knockout of IGFR also induced impairments in working memory. Using primary astrocyte cultures, we show that reducing IGF-1 signaling via a 30–50% reduction IGFR expression, comparable to the physiological changes in IGF-1 that occur with age, significantly impaired ATP synthesis. IGFR deficient astrocytes also displayed altered mitochondrial structure and function and increased mitochondrial ROS production associated with the induction of an antioxidant response. However, IGFR deficient astrocytes were more sensitive to H2O2-induced cytotoxicity. Moreover, IGFR deficient astrocytes also showed significantly impaired glucose and Aβ uptake, both critical functions of astrocytes in the brain. Conclusions Regulation of astrocytic mitochondrial function and redox status by IGF-1 is essential to maintain astrocytic function and coordinate hippocampal-dependent spatial learning. Age-related astrocytic dysfunction caused by diminished IGF-1 signaling may contribute to the pathogenesis of Alzheimers disease and other age-associated cognitive pathologies.
Journal of Neurochemistry | 2017
Dustin R. Masser; Laura Otalora; Nicholas W. Clark; Michael Kinter; Michael H. Elliott; Willard M. Freeman
Diabetic retinopathy is a neurovascular diabetes complication resulting in vision loss. A wealth of literature reports retinal molecular changes indicative of neural deficits, inflammation, and vascular leakage with chronic diabetes, but the mechanistic causes of disease initiation and progression are unknown. Microvascular mitochondrial DNA (mtDNA) damage leading to mitochondrial dysfunction has been proposed to drive vascular dysfunction in retinopathy. However, growing evidence suggests that neural retina dysfunction precedes and may cause vascular damage. Therefore, we tested the hypothesis that neural mtDNA damage and mitochondrial dysfunction are an early initiating factor of neural diabetic retinopathy development in a rat streptozotocin‐induced, Type I diabetes model. Mitochondrial function (oxygen consumption rates) was quantified in retinal synaptic terminals from diabetic and non‐diabetic rats with paired retinal structural and function assessment (optical coherence tomography and electroretinography, respectively). Mitochondrial genome damage was assessed by identifying mutations and deletions across the mtDNA genome by high depth sequencing and absolute mtDNA copy number counting through digital PCR. Mitochondrial protein expression was assessed by targeted mass spectrometry. Retinal functional deficits and neural anatomical changes were present after 3 months of diabetes and prevented/normalized by insulin treatment. No marked dysfunction of mitochondrial activity, maladaptive changes in mitochondrial protein expression, alterations in mtDNA copy number, or increase in mtDNA damage was observed in conjunction with retinal functional and anatomical changes. These results demonstrate that neural retinal dysfunction with diabetes begins prior to mtDNA damage and dysfunction, and therefore retinal neurodegeneration initiation with diabetes occurs through other, non‐mitochondrial DNA damage, mechanisms.
Aging Cell | 2017
Dustin R. Masser; Niran Hadad; Hunter Porter; Colleen A. Mangold; Archana Unnikrishnan; Matthew M. Ford; Cory B. Giles; Constantin Georgescu; Mikhail G. Dozmorov; Jonathan D. Wren; Arlan Richardson; David R. Stanford; Willard M. Freeman
DNA methylation is a central regulator of genome function, and altered methylation patterns are indicative of biological aging and mortality. Age‐related cellular, biochemical, and molecular changes in the hippocampus lead to cognitive impairments and greater vulnerability to neurodegenerative disease that varies between the sexes. The role of hippocampal epigenomic changes with aging in these processes is unknown as no genome‐wide analyses of age‐related methylation changes have considered the factor of sex in a controlled animal model. High‐depth, genome‐wide bisulfite sequencing of young (3 month) and old (24 month) male and female mouse hippocampus revealed that while total genomic methylation amounts did not change with aging, specific sites in CG and non‐CG (CH) contexts demonstrated age‐related increases or decreases in methylation that were predominantly sexually divergent. Differential methylation with age for both CG and CH sites was enriched in intergenic and intronic regions and under‐represented in promoters, CG islands, and specific enhancer regions in both sexes, suggesting that certain genomic elements are especially labile with aging, even if the exact genomic loci altered are predominantly sex‐specific. Lifelong sex differences in autosomal methylation at CG and CH sites were also observed. The lack of genome‐wide hypomethylation, sexually divergent aging response, and autosomal sex differences at CG sites was confirmed in human data. These data reveal sex as a previously unappreciated central factor of hippocampal epigenomic changes with aging. In total, these data demonstrate an intricate regulation of DNA methylation with aging by sex, cytosine context, genomic location, and methylation level.