Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dustin W. DuBois is active.

Publication


Featured researches published by Dustin W. DuBois.


Journal of Pharmacology and Experimental Therapeutics | 2006

Distinct Functional Characteristics of the Lateral/Basolateral Amygdala GABAergic System in C57BL/6J and DBA/2J Mice

Dustin W. DuBois; Andreas Perlegas; Donald W. Floyd; Jeffery L. Weiner; Brian A. McCool

It is generally understood that genetic mechanisms contribute to pathological anxiety and that C57BL/6 (B6) and DBA/2J (D2) mice, inbred strains differing markedly in their anxiety-like behaviors, may represent a model system to study these contributions. Because lateral/basolateral amygdala (BLA) GABAA receptors help regulate anxiety-like behaviors, we have tested the hypothesis that differences in receptor function/expression may be related to strain-specific differences in experimentally measured anxiety. First, we demonstrated that anxiety-like behaviors in two separate assays were more substantial in D2 mice. Then, using whole-cell electrophysiology of isolated neurons, we found that D2 BLA neurons expressed significantly greater GABA-gated responses than B6 BLA neurons. This was specific for GABAA receptors, because N-methyl-d-aspartate-gated responses were similar between strains. At the molecular level, this increased GABAA function was associated with higher levels of α2 subunit mRNA expression in D2 BLA. Finally, to understand the ramifications of these functional and molecular biological differences, we examined both electrically evoked GABAergic responses and spontaneous synaptic currents using whole-cell recordings with in vitro slice preparations. Presynaptic GABAergic function was more robust in D2 compared with B6 slices. Together, our findings suggest that genetic mechanisms differentially represented in these two inbred mouse strains lead to robust differences in pre- and postsynaptic aspects of amygdala GABAergic function.


Biology Open | 2014

MiR-153 targets the nuclear factor-1 family and protects against teratogenic effects of ethanol exposure in fetal neural stem cells

Pai-Chi Tsai; Shameena Bake; Sridevi Balaraman; Jeremy Rawlings; Rhonda R. Holgate; Dustin W. DuBois; Rajesh C. Miranda

ABSTRACT Ethanol exposure during pregnancy is an established cause of birth defects, including neurodevelopmental defects. Most adult neurons are produced during the second trimester-equivalent period. The fetal neural stem cells (NSCs) that generate these neurons are an important but poorly understood target for teratogenesis. A cohort of miRNAs, including miR-153, may serve as mediators of teratogenesis. We previously showed that ethanol decreased, while nicotine increased miR-153 expression in NSCs. To understand the role of miR-153 in the etiology of teratology, we first screened fetal cortical NSCs cultured ex vivo, by microarray and quantitative RT-PCR analyses, to identify cell-signaling mRNAs and gene networks as important miR-153 targets. Moreover, miR-153 over-expression prevented neuronal differentiation without altering neuroepithelial cell survival or proliferation. Analysis of 3′UTRs and in utero over-expression of pre-miR-153 in fetal mouse brain identified Nfia (nuclear factor-1A) and its paralog, Nfib, as direct targets of miR-153. In utero ethanol exposure resulted in a predicted expansion of Nfia and Nfib expression in the fetal telencephalon. In turn, miR-153 over-expression prevented, and partly reversed, the effects of ethanol exposure on miR-153 target transcripts. Varenicline, a partial nicotinic acetylcholine receptor agonist that, like nicotine, induces miR-153 expression, also prevented and reversed the effects of ethanol exposure. These data collectively provide evidence for a role for miR-153 in preventing premature NSC differentiation. Moreover, they provide the first evidence in a preclinical model that direct or pharmacological manipulation of miRNAs have the potential to prevent or even reverse effects of a teratogen like ethanol on fetal development.


Brain Research | 2004

Critically timed ethanol exposure reduces GABAAR function on septal neurons developing in vivo but not in vitro.

Shu-Huei Hsiao; Dustin W. DuBois; Rajesh C. Miranda; Gerald D. Frye

Six-day binge ethanol intoxication postnatal days (PD) 4-9 delays up-regulation of gamma-aminobutyric acid type A receptors (GABAARs) in developing rat septal neurons [Dev. Brain Res. 130 (2001) 25]. This distortion occurs during synaptogenesis and could contribute to cognitive dysfunction in fetal alcohol syndrome (FAS). Here, we asked two questions concerning requirements for vulnerability to GABAAR blunting by ethanol. First, we asked whether receptor blunting required PD 4-9 ethanol exposure in rat pups and found that just a brief 2-day exposure (PD 8-9) was as effective as all 6 days. However, 2-day exposure on PD 4-5 was ineffective, showing that binge timing was important. We also asked whether binge exposure directly inhibited intrinsic processes of septal neurons and could blunt GABAARs on cells maturing outside the brain. Embryonic septal neurons grown in serum-free dispersed culture developed extensive dendritic arborizations, spontaneous synaptic activity and robust whole-cell GABAAR function, but surprisingly, did not show developmental up-regulation of GABAARs like septal neurons maturing in vivo [Brain Res. 810 (1998) 100]. Furthermore, age-matched 6-day binge ethanol exposure did not blunt GABAAR function in septal neurons in vitro. These results suggest developmental mechanisms driving up-regulation of GABAAR function in septal neurons in vivo briefly becomes vulnerable to ethanol insult in early postnatal life. While septal neurons express comparable functional GABAARs whether maturing in vivo or in vitro, vulnerability to ethanol-induced receptor blunting requires elements of an intact brain environment not replicated in culture.


Developmental Brain Research | 2001

Early postnatal ethanol intubation blunts GABAA receptor up-regulation and modifies 3α-hydroxy-5α-pregnan-20-one sensitivity in rat MS/DB neurons

Shu-Huei Hsiao; Jason L. Acevedo; Dustin W. DuBois; Kelly R. Smith; James R. West; Gerald D. Frye

Previously we found postnatal binge-like ethanol exposure using an artificial-rearing method in the rat delayed developmental up-regulation of GABA(A) receptors (GABA(A)Rs) in both medial septum/diagonal band (MS/DB) and cerebellar Purkinje neurons. In the present study, the impact of ethanol on developing GABA(A)Rs in MS/DB neurons was further tested under conditions not requiring anesthesia or maternal deprivation. Nursing rat pups received ethanol (4.5-5.25 g/kg/day) on postnatal days (PD) 4-9, which was administrated manually by oral intragastric intubation. This treatment caused dose-dependent blunting of peak GABA(A) receptor whole cell currents in acutely dissociated MS/DB cells on PD 12-15. The threshold with oral intubation was slightly higher than previously observed for artificial-rearing (4.9 vs. 4.5 g/kg/day). The previously observed reduced sensitivity of GABA(A)Rs to Zn(2+)-inhibition after ethanol was not found with the intubation model. In studies only carried out using the intubation method, 3alpha-hydroxy-5alpha-pregnan-20-one (3alpha-OH-DHP) caused an allosteric concentration-dependent potentiation of currents activated by non-saturated concentrations of GABA. A bicuculline sensitive direct activation of GABA(A)Rs also occurred with higher concentrations of 3alpha-OH-DHP alone. Ethanol intubation up-regulated allosteric neurosteroid potentiation with low concentrations of GABA, but did not change direct agonist actions of 3alpha-OH-DHP. Finally, 3alpha-OH-DHP did not prime ethanol insensitive GABA(A)Rs to become sensitivity to acute ethanol potentiation. These results indicate ethanol consistently blunts postnatal GABA(A) receptor up-regulation across early postnatal binge-type ethanol exposure models and may increase positive modulation of GABA(A) receptors by endogenous neurosteroids.


Life Sciences | 2013

Varenicline and nicotine enhance GABAergic synaptic transmission in rat CA1 hippocampal and medial septum/diagonal band neurons

Dustin W. DuBois; Joanne C. Damborsky; Annette S. Fincher; Gerald D. Frye; Ursula H. Winzer-Serhan

AIMSnThe FDA approved smoking cessation aid varenicline can effectively attenuate nicotine-stimulated dopamine release. Varenicline may also exert important actions on other transmitter systems that also influence nicotine reinforcement or contribute to the drugs cognitive and affective side effects. In this study, we determined if varenicline, like nicotine, can stimulate presynaptic GABA release.nnnMAIN METHODSnUsing whole-cell patch-clamp techniques, we measured GABA(A)R-mediated asynchronous, spontaneous miniature inhibitory postsynaptic currents (mIPSCs) in acute brain slices from two brain regions important for learning and memory, the hippocampus and basal forebrain.nnnKEY FINDINGSnBoth varenicline (10 μM) and nicotine (10 μM) applications alone resulted in small but significant increases in amplitude, as well as robustly enhanced frequency of mIPSCs in hippocampal CA1 pyramidal neurons and medial septum/diagonal band (MS/DB) neurons. A unique subpopulation of MS/DB neurons showed decreases in frequency. In the presence of nicotine, varenicline effectively attenuated the expected enhancement of hippocampal mIPSC frequency like a competitive antagonist. However, in the MS/DB, varenicline only partially attenuated nicotines effects. Reversing the order of drug application by adding nicotine to varenicline-exposed slices had little effect.nnnSIGNIFICANCEnVarenicline, like nicotine, stimulates presynaptic GABA release, and also exerts a partial agonist action by attenuating nicotine-stimulated release in both the hippocampus and basal forebrain. These effects could potentially affect cognitive functions.


Journal of Neurophysiology | 2014

Characterization of age-related changes in synaptic transmission onto F344 rat basal forebrain cholinergic neurons using a reduced synaptic preparation

William H. Griffith; Dustin W. DuBois; Annette S. Fincher; Kathryn A. Peebles; Jennifer L. Bizon; David Murchison

Basal forebrain (BF) cholinergic neurons participate in a number of cognitive processes that become impaired during aging. We previously found that age-related enhancement of Ca(2+) buffering in rat cholinergic BF neurons was associated with impaired performance in the water maze spatial learning task (Murchison D, McDermott AN, Lasarge CL, Peebles KA, Bizon JL, and Griffith WH. J Neurophysiol 102: 2194-2207, 2009). One way that altered Ca(2+) buffering could contribute to cognitive impairment involves synaptic function. In this report we show that synaptic transmission in the BF is altered with age and cognitive status. We have examined the properties of spontaneous postsynaptic currents (sPSCs) in cholinergic BF neurons that have been mechanically dissociated without enzymes from behaviorally characterized F344 rats. These isolated neurons retain functional presynaptic terminals on their somata and proximal dendrites. Using whole cell patch-clamp recording, we show that sPSCs and miniature PSCs are predominately GABAergic (bicuculline sensitive) and in all ways closely resemble PSCs recorded in a BF in vitro slice preparation. Adult (4-7 mo) and aged (22-24 mo) male rats were cognitively assessed using the water maze. Neuronal phenotype was identified post hoc using single-cell RT-PCR. The frequency of sPSCs was reduced during aging, and this was most pronounced in cognitively impaired subjects. This is the same population that demonstrated increased intracellular Ca(2+) buffering. We also show that increasing Ca(2+) buffering in the synaptic terminals of young BF neurons can mimic the reduced frequency of sPSCs observed in aged BF neurons.


Brain Research | 2013

Long-lasting distortion of GABA signaling in MS/DB neurons after binge-like ethanol exposure during initial synaptogenesis

Haiying Wang; Dustin W. DuBois; Angelika N. Tobery; William H. Griffith; Paul C. Brandt; Gerald D. Frye

Using a well-established model of binge-like ethanol treatment of rat pups on postnatal days (PD) 4-9, we found that maturation of GABAA receptor (GABAAR) miniature postsynaptic currents (mPSCs) was substantially blunted for medial septum/diagonal band (MS/DB) neurons in brain slices on PD 11-16. Ethanol reduced mPSC amplitude, frequency, and decay kinetics, while attenuating or exaggerating allosteric actions of zolpidem and allopregnanolone, respectively. The impact of ethanol in vivo was long lasting as most changes in MS/DB GABAAR mPSCs were still observed as late as PD 60-85. Maturing MS/DB neurons in naïve brain slices PD 4-16 showed increasing mPSC frequency, decay kinetics, and zolpidem sensitivity that were nearly identical to our earlier findings in cultured septal neurons (DuBois et al., 2004, 2006). These rapidly developing mPSC parameters continued to mature through the first month of life then stabilized throughout the remainder of the lifespan. Finally, equivalent ethanol-induced alterations in GABAAR mPSC signaling were present in MS/DB neurons from both male and female animals. Previously, we showed ethanol treatment of cultured embryonic day 20 septal neurons distorts the maturation of GABAAR mPSCs predicting that early stages of GABAergic transmission in MS/DB neurons are vulnerable to intoxication injury (DuBois et al., 2004, 2006). Since the overall character, timing, and magnitude of GABAergic mPSC developmental- and ethanol-induced changes in the in vivo model so closely mirror chronologically equivalent adaptations in cultured septal neurons, this suggests that such parallel models of ethanol impairment of GABAergic synaptic development in vivo and in vitro should be useful for translational studies exploring the efficacy and mechanism of action of potential therapeutic interventions from the cellular to whole animal level.


Brain Research | 2006

GABAergic miniature postsynaptic currents in septal neurons show differential allosteric sensitivity after binge-like ethanol exposure.

Dustin W. DuBois; Jerome P. Trzeciakowski; Alan R. Parrish; Gerald D. Frye

Binge-like ethanol treatment of septal neurons blunts GABAAR-mediated miniature postsynaptic currents (mPSCs), suggesting it arrests synaptic development. Ethanol may disrupt postsynaptic maturation by blunting feedback signaling through immature GABAARs. Here, the impact of ethanol on the sensitivity of mPSCs to zolpidem, zinc and 3alpha-hydroxy-5alpha-pregnan-20-one (3alpha-OH-DHP) was tested. The decay phase of mPSCs showed concentration-dependent potentiation by zolpidem (0.03-100 microM), which was substantially blunted after ethanol exposure. Since zolpidem potentiation exhibited a substantial age-dependent increase in untreated neurons, this finding supported the idea that ethanol arrests synaptic development. GABAAR alpha1 subunit protein also increased with age in untreated neurons, paralleling enhanced sensitivity to zolpidem. Surprisingly, alpha1 levels were not reduced by binge ethanol even though mPSCs were relatively zolpidem-insensitive. Zinc (3-30 microM) decreased mPSC parameters in a concentration- and age-related manner with older untreated cells showing less inhibition. However, there was no increase in mPSC zinc sensitivity after binge ethanol as would be expected if a general arrest of synaptic maturation had occurred. 3alpha-OH-DHP (3-1000 nM) induced concentration-dependent potentiation of mPSC decay. Although potentiation was age-independent, binge ethanol treatment exaggerated sensitivity to this neurosteroid. Finally, chronic picrotoxin pretreatment (100 microM) intended to mimic GABAAR inhibition from ethanol pretreatment did not significantly change mPSC modulation by zolpidem, zinc or 3alpha-OH-DHP. These results suggest that binge ethanol treatment selectively arrests a subset of processes important for maturation of postsynaptic GABAA Rs. However, it is unlikely that ethanol causes a broad arrest of postsynaptic development through a direct inhibition of GABAAR signaling.


Progress in Neuro-psychopharmacology & Biological Psychiatry | 2016

Fluoxetine disrupts motivation and GABAergic signaling in adolescent female hamsters.

John L. Shannonhouse; Dustin W. DuBois; Annette S. Fincher; Alejandra M. Vela; Morgan M. Henry; Paul J. Wellman; Gerald D. Frye; Caurnel Morgan

Initial antidepressant treatment can paradoxically worsen symptoms in depressed adolescents by undetermined mechanisms. Interestingly, antidepressants modulate GABAA receptors, which mediate paradoxical effects of other therapeutic drugs, particularly in females. Although the neuroanatomic site of action for this paradox is unknown, elevated GABAA receptor signaling in the nucleus accumbens can disrupt motivation. We assessed fluoxetines effects on motivated behaviors in pubescent female hamsters - anhedonia in the reward investigational preference (RIP) test as well as anxiety in the anxiety-related feeding/exploration conflict (AFEC) test. We also assessed accumbal signaling by RT-PCR and electrophysiology. Fluoxetine initially worsened motivated behaviors at puberty, relative to adulthood. It also failed to improve these behaviors as pubescent hamsters transitioned into adulthood. Low accumbal mRNA levels of multiple GABAA receptor subunits and GABA-synthesizing enzyme, GAD67, assessed by RT-PCR, suggested low GABAergic tone at puberty. Nonetheless, rapid fluoxetine-induced reductions of α5GABAA receptor and BDNF mRNA levels at puberty were consistent with age-related differences in GABAergic responses to fluoxetine and disruption of the motivational state. Whole-cell patch clamping of accumbal slices also suggested low GABAergic tone by the low amplitude of miniature inhibitory postsynaptic currents (mIPSCs) at puberty. It also confirmed age-related differences in GABAergic responses to fluoxetine. Specifically, fluoxetine potentiated mIPSC amplitude and frequency at puberty, but attenuated the amplitude during adulthood. These results implicate GABAergic tone and GABAA receptor plasticity in adverse motivational responses and resistance to fluoxetine during adolescence.


Alcohol | 2018

Effects of ethanol and varenicline on female Sprague-Dawley rats in a third trimester model of fetal alcohol syndrome

Karienn S. Montgomery; Eric Bancroft; Annette S. Fincher; Ewelina A. Migut; Vincent Provasek; David Murchison; Dustin W. DuBois

Perinatal ethanolxa0exposure disrupts a variety of developmental processes in neurons important for establishing a healthy brain. These ethanol-induced impairments known as fetal alcohol spectrum disorder (FASD) are not fully understood, and currently, there is no effective treatment. Further, growing evidence suggests that adult females are more susceptible to ethanol, with the effects of perinatal ethanol exposure also being sexually divergent. Female models have been historically underutilized in neurophysiological investigations, but here, we used a third-trimester binge-ethanol model of FASD to examine changes to basal forebrain (BF) physiology and behavior in female Sprague-Dawley rats. We also tested varenicline as a potential cholinomimetic therapeutic. Rat pups were gavage-treated with binge-like ethanol, varenicline and ethanol, and varenicline alone. Using patch-clamp electrophysiology in BF slices, we observed that binge-ethanol exposure increased spontaneous post-synaptic current (sPSC) frequency. Varenicline exposure alone also enhanced sPSC frequency. Varenicline plus ethanol co-treatment prevented the sPSC frequency increase. Changes in BF synaptic transmission persisted into adolescence after binge-ethanol treatment. Behaviorally, binge-ethanol treated females displayed increased anxiety (thigmotaxis) and demonstrated learning deficits in the water maze. Varenicline/ethanol co-treatment was effective at reducing these behavioral deficits. In the open field, ethanol-treated rats displayed longer distances traveled and spent less time in the center of the open field box. Co-treated rats displayed less anxiety, demonstrating a possible effect of varenicline on this measure. In conclusion, ethanol-induced changes in both BF synaptic transmission and behavior were reduced by varenicline in female rats, supporting a role for cholinergic therapeutics in FASD treatment.

Collaboration


Dive into the Dustin W. DuBois's collaboration.

Researchain Logo
Decentralizing Knowledge