Duygu Ağaoğulları
Istanbul Technical University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Duygu Ağaoğulları.
Transactions of Nonferrous Metals Society of China | 2016
Özge Balcı; Duygu Ağaoğulları; M. Lütfi Öveçoğlu; İsmail Duman
Niobium boride powders having NbB, NbB2 and Nb3B4 phases in various amounts and single phase NbB powders were successfully synthesized by using powder metallurgy methods from related metal oxide raw materials in the presence of a strong reducing agent. Nb2O5, B2O3 and Mg powder blends were milled at room temperature by a high-energy ball mill for different time. Subsequently, undesired MgO phase was removed from the milled powders by HCl leaching to constitute NbB–NbB2–Nb3B4 as final products and they were subjected to an annealing process at 1500 °C for 4 h to observe probable boride transformation. Characterization was carried out by XRD, DSC, PSA, SEM/EDX, TEM and VSM. The effects of milling time (up to 9 h) on the formation, microstructure and thermal behavior of the final products were investigated. Reduction reaction took place after milling stoichiometric powder blends for 2 h. Nano-sized NbB–NbB2–Nb3B4 powders in high purity were obtained in the absence of any secondary phase and any impurity via mechanochemistry by milling for 5 h and leaching with 4 mol/L HCl. After annealing, pure and nano-sized NbB–NbB2–Nb3B4 powders transformed to a single NbB phase without leaving behind NbB2 and Nb3B4 phases.
Key Engineering Materials | 2013
Oguzhan Gunduz; Yesim Muge Sahin; Simeon Agathopoulos; Duygu Ağaoğulları; Hasan Gökçe; Eyup Sabri Kayali; Cenk Aktas; Besim Ben-Nissan; Faik N. Oktar
The process is a simple chemical method and aims to produce nano-structured calcium phosphate powders from natural sources, for biomedical applications. For this purpose, Atlantic Deer Cowrie (ADC) shells (Cypraea cervus Linnaeus, 1771) were collected from a local gift store in Istanbul. The empty shells were cleaned and crushed then were ball milled and sieved under 100µm. The raw powders were suspended on a hotplate stirrer for a simple chemical agitation. The temperature was kept at 80°C for 15 min. and then appropriate amount of H3PO4 was added by titration into the prepared solution to form calcium phosphate precursors. The solution was stirred on a hotplate for 8 hours then dried at 100°C for 24 hours. Afterwards the resulting dried sediments were collected and heat treated between 400-800°C for 4 hours, dependent on the required specific calcium phosphate phase. X-ray diffraction (XRD) analysis and scanning electron microscopy (SEM) were carried out for identifying various hydroxyapatite (HA), tricalcium phosphate (TCP) and other calcium phosphate phases. Various particle sizes ranging from nano to micron, are obtained depending on the chemistry used and the processing technique applied during the production. A range of calcium phosphate phases can be obtained from ADC shells, by using a simple and economic conversion method. Proper cleaning methods developed and appropriate preparation techniques will enable us to use these nano calcium phosphate powders in orthopedic and dental applications.
Key Engineering Materials | 2014
Faik N. Oktar; Hasan Gökçe; Oguzhan Gunduz; Yesim Muge Sahin; Duygu Ağaoğulları; I.G. Turner; L.S. Ozyegin; Besim Ben-Nissan
In this study the structural and chemical properties of barnacle shell based bioceramic materials (i.e. hydroxyapatite, whitlockite, monetite and other phases) were produced by using mechano-chemical (hot-plate) conversion method. Cleaned barnacle shells were ball milled down to <75µm in diameter. Differential thermal and gravimetric analyses (DTA/TGA) were performed to determine the exact CaCO3 content. Sample batches of 2g were prepared from the fine powders produced. For each batch, the required volume of an aqueous H3PO4 solution was calculated in order to set the stoichiometric molar ratio of Ca/P equal to 1.5 for ß-tricalcium phosphate (ß-TCP) or to 1.667 for hydroxyapatite (HA). The temperature was set to 80°C for 15 minutes to complete the process. After the titration of the equivalent amount of H3PO4 into the prepared solution, agitation was carried out on a hot-plate (i.e. mechano-chemical processing) for 8 hours. The sediments formed were dried and the resulting TCP and HA powders were calcined at 400°C and 800°C respectively. For complete characterization of the bioceramics produced, scanning electron microscopy (SEM), fourier transform infrared spectroscopy (FTIR) and x-ray diffraction (XRD) analyses were carried out. The current study proposes a simple, economic and time efficient method for nano-bioceramic production.
Solid State Phenomena | 2012
Özge Balcı; Ö. Utku Demirkan; Duygu Ağaoğulları; Hasan Gökçe; Aziz Genç; M. Lütfi Öveçoğlu; İsmail Duman
In order to improve the properties of Ni activated sintered W compacts, La2O3 was added to a W-1 wt.% Ni matrix alloy. W-1 wt.% Ni-0.5 wt.% La2O3 and W-1 wt.% Ni-1 wt.% La2O3 composites were fabricated by mechanical alloying and activated sintering methods. The effects of La2O3 content and mechanical alloying duration on the microstructural and physical properties of activated sintered W-Ni compacts were investigated. The results showed that La2O3 particles have a significant effect on the density/microhardness values and wear amounts of the samples. The relative density value of 96.39 % and microhardness value of 4.08±0.28 GPa of W-1 wt.% Ni samples increased to respectively 98.09 % and 5.45±0.29 GPa with the addition of 1 wt.% La2O3. Wear rate of 3.26±0.81 (mm3N-1m-1)x10-9 of the W-1 wt% Ni samples decreased to 2.10±0.24 (mm3N-1m-1)x10-9 with the addition of 0.5 wt.% La2O3. Furthermore, grain sizes decreased and microhardness values increased with increasing mechanical alloying duration.
Materials Testing-Materials and Components Technology and Application | 2018
Sıddıka Mertdinç; Emre Tekoğlu; Duygu Ağaoğulları; M. Lütfi Öveçoğlu
Abstract Al-Si metal matrix composites have generally been manufactured using casting methods. Powder metallurgy has been used as an alternative manufacturing technique to obtain more homogeneous and segregation-free products. In this study, 2 wt.-% TiB2 particle reinforced Al-7 wt.-% Si composites were manufactured using high energy ball milling, cold pressing (at 450 MPa) and pressureless sintering (at 570 °C for 2 h under Ar flow) techniques. The effects of different milling processes, such as mechanical alloying at room temperature and/or cryomilling in an isolated polycarbonate cylinder soaked in liquid nitrogen or sequential milling, on the Al-7 wt.-% Si-2 wt.-% TiB2 powders and corresponding bulk products were investigated. The microstructural, physical and mechanical properties of the composites sintered from the mechanically alloyed, mechanically alloyed and cryomilled, and sequentially milled powders were significantly improved as compared with those of as-blended ones. The highest density, the highest microhardness and the lowest wear rate were obtained in a composite sintered from mechanically alloyed and cryomilled powders at 92.38 %, 214.14 ± 41.17 HV and 3.8 × 10−3 mm3·N−1 × m−1, respectively.
Solid State Phenomena | 2017
Sıddıka Mertdinç; Emre Tekoğlu; Hasan Gökçe; Duygu Ağaoğulları; M. Lütfi Öveçoğlu
In this study, the effect of mechanical alloying (MA) on the microstructural, mechanical and physical properties of vanadium boride particulate reinforced Al-7 wt. % Si matrix composites were investigated. VB-VB2-V3B4 containing vanadium boride hybrid powders were mechanochemically synthesized for 5 h from the V2O5-B2O3-Mg powder blends and leached with hydrochloric acid (HCl) for purification. Laboratory-synthesized VB-VB2-V3B4 powders were incorporated into the Al-7wt. % Si matrix powders with the amount of 2 wt.% via MA for 4h in a SpexTM Mixer/Mill using hardened steel vial/balls with a ball-to-powder weight ratio of 7/1. After the MA process, phase analysis (X-ray diffraction), particle size analysis (laser particle size measurement), surface area analysis (Brunauer-Emmett-Teller measurement) and microstructural characterization (scanning electron microscope (SEM) micrograph) and thermal analysis (differential scanning calorimetry (DSC)) of the non-milled/milled Al-7 wt.% Si-2wt.% (VB-VB2-V3B4) powders were conducted. As-blended and MA’d powders were compacted at a uniaxial hydraulic press to obtain cylindrical compacts with a diameter of 12 mm under a pressure of 400 MPa. Green bodies were sintered at 570°C for 2 h under Ar gas flowing conditions. Microstructural characterizations of the sintered samples were carried out using XRD and optical microscope (OM). Physical and mechanical properties of the composites were investigated in terms of density (Archimedes method), Vickers microhardness and wear rate. The microhardness and wear rate of the 4h of MA’d and sintered sample respectively increased to 0.865±0.256 GPa and 0.0036 mm3/N.m as compared with those of as-blended and sintered sample.
Journal of Alloys and Compounds | 2014
Özge Balcı; Duygu Ağaoğulları; Hasan Gökçe; İsmail Duman; M. Lütfi Öveçoğlu
Journal of The European Ceramic Society | 2011
Hasan Gökçe; Duygu Ağaoğulları; M. Lütfi Öveçoğlu; İsmail Duman; Tahsin Boyraz
Ceramics International | 2012
Duygu Ağaoğulları; İsmail Duman; M. Lütfi Öveçoğlu
Acta Physica Polonica A | 2012
Duygu Ağaoğulları; D. Kel; Hasan Gökçe; I. Duman; M.L. Öveçoğlu; A.T. Akarsubaşi; D. Bılgıç; Faik N. Oktar