Dvora Ganoth
Technion – Israel Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dvora Ganoth.
Nature Cell Biology | 2001
Dvora Ganoth; Gil Bornstein; Tun K. Ko; Brett Larsen; Mike Tyers; Michele Pagano; Avram Hershko
The cyclin-dependent kinase (CDK) inhibitor p27 is degraded in late G1 phase by the ubiquitin pathway, allowing CDK activity to drive cells into S phase. Ubiquitinylation of p27 requires its phosphorylation at Thr 187 (refs 3, 4) and subsequent recognition by S-phase kinase associated protein 2 (Skp2; refs 5–8), a member of the F-box family of proteins that associates with Skp1, Cul-1 and ROC1/Rbx1 to form an SCF ubiquitin ligase complex. However, in vitro ligation of p27 to ubiquitin could not be reconstituted by known purified components of the SCFSkp2 complex. Here we show that the missing factor is CDK subunit 1 (Cks1), which belongs to the highly conserved Suc1/Cks family of proteins that bind to some CDKs and phosphorylated proteins and are essential for cell-cycle progression. Human Cks1, but not other members of the family, reconstitutes ubiquitin ligation of p27 in a completely purified system, binds to Skp2 and greatly increases binding of T187-phosphorylated p27 to Skp2. Our results represent the first evidence that an SCF complex requires an accessory protein for activity as well as for binding to its phosphorylated substrate.
Nature | 2003
Luca Busino; Maddalena Donzelli; Massimo Chiesa; Daniele Guardavaccaro; Dvora Ganoth; N. Valerio Dorrello; Avram Hershko; Michele Pagano; Giulio Draetta
The Cdc25A phosphatase is essential for cell-cycle progression because of its function in dephosphorylating cyclin-dependent kinases. In response to DNA damage or stalled replication, the ATM and ATR protein kinases activate the checkpoint kinases Chk1 and Chk2, which leads to hyperphosphorylation of Cdc25A. These events stimulate the ubiquitin-mediated proteolysis of Cdc25A and contribute to delaying cell-cycle progression, thereby preventing genomic instability. Here we report that β-TrCP is the F-box protein that targets phosphorylated Cdc25A for degradation by the Skp1/Cul1/F-box protein complex. Downregulation of β-TrCP1 and β-TrCP2 expression by short interfering RNAs causes an accumulation of Cdc25A in cells progressing through S phase and prevents the degradation of Cdc25A induced by ionizing radiation, indicating that β-TrCP may function in the intra-S-phase checkpoint. Consistent with this hypothesis, suppression of β-TrCP expression results in radioresistant DNA synthesis in response to DNA damage—a phenotype indicative of a defect in the intra-S-phase checkpoint that is associated with an inability to regulate Cdc25A properly. Our results show that β-TrCP has a crucial role in mediating the response to DNA damage through Cdc25A degradation.
The EMBO Journal | 2002
Maddalena Donzelli; Massimo Squatrito; Dvora Ganoth; Avram Hershko; Michele Pagano; Giulio Draetta
The Cdc25 dual‐specificity phosphatases control progression through the eukaryotic cell division cycle by activating cyclin‐dependent kinases. Cdc25 A regulates entry into S‐phase by dephosphorylating Cdk2, it cooperates with activated oncogenes in inducing transformation and is overexpressed in several human tumors. DNA damage or DNA replication blocks induce phosphorylation of Cdc25 A and its subsequent degradation via the ubiquitin–proteasome pathway. Here we have investigated the regulation of Cdc25 A in the cell cycle. We found that Cdc25 A degradation during mitotic exit and in early G1 is mediated by the anaphase‐promoting complex or cyclosome (APC/C)Cdh1 ligase, and that a KEN‐box motif in the N‐terminus of the protein is required for its targeted degradation. Interestingly, the KEN‐box mutated protein remains unstable in interphase and upon ionizing radiation exposure. Moreover, SCF (Skp1/Cullin/F‐box) inactivation using an interfering Cul1 mutant accumulates and stabilizes Cdc25 A. The presence of Cul1 and Skp1 in Cdc25 A immunocomplexes suggests a direct involvement of SCF in Cdc25 A degradation during interphase. We propose that a dual mechanism of regulated degradation allows for fine tuning of Cdc25 A abundance in response to cell environment.
Journal of Biological Chemistry | 2002
Danielle Sitry; Markus A. Seeliger; Tun K. Ko; Dvora Ganoth; Sadie E Breward; Laura S. Itzhaki; Michele Pagano; Avram Hershko
Previous studies have shown that the cyclin-dependent kinase (Cdk) inhibitor p27Kip1 is targeted for degradation by an SCFSkp2 ubiquitin ligase complex and that this process requires Cks1, a member of the highly conserved Suc1/Cks family of cell cycle regulatory proteins. All proteins of this family have Cdk-binding and anion-binding sites, but only mammalian Cks1 binds to Skp2 and promotes the association of Skp2 with p27 phosphorylated on Thr-187. The molecular mechanisms by which Cks1 promotes the interaction of the Skp2 ubiquitin ligase subunit to p27 remained obscure. Here we show that the Skp2-binding site of Cks1 is located on a region including the α2- and α1-helices and their immediate vicinity, well separated from the other two binding sites. All three binding sites of Cks1 are required for p27-ubiquitin ligation and for the association of Skp2 with Cdk-bound, Thr-187-phosphorylated p27. Cks1 and Skp2 mutually promote the binding of each other to a peptide similar to the 19 C-terminal amino acids of p27 containing phosphorylated Thr-187. This latter process requires the Skp2- and anion-binding sites of Cks1, but not its Cdk-binding site. It is proposed that the Skp2-Cks1 complex binds initially to the C-terminal region of phosphorylated p27 in a process promoted by the anion-binding site of Cks1. The interaction of Skp2 with the substrate is further strengthened by the association of the Cdk-binding site of Cks1 with Cdk2/cyclin E, to which phosphorylated p27 is bound.
Cell Cycle | 2004
Maddalena Donzelli; Luca Busino; Massimo Chiesa; Dvora Ganoth; Avram Hershko; Giulio Draetta
We have recently demonstrated that regulation of Cdc25A protein abundance during S phase and in response to DNA damage is mediated by SCFβTrCP activity. Based on sequence homology of known βTrCP substrates, we found that Cdc25A contains a conserved motif (DSG), phosphorylation of which is required for interaction with βTrCP1. Here, we show that phosphorylation at Ser 82 within the DSG motif anchors Cdc25A to βTrCP and that Chk1-dependent phosphorylation at Ser 76 affects this interaction as well as βTrCP-dependent degradation. We propose that a hierarchical order of phosphorylation events commits Cdc25A to βTrCP-dependent degradation. According to our model, phosphorylation at Ser 76 is a “priming” step required for Ser 82 phosphorylation, which in turn allows recruitment of Cdc25A by βTrCP and subsequent βTrCP-dependent degradation.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Esther Eytan; Ilana Braunstein; Dvora Ganoth; Adar Teichner; James C. Hittle; Tim J. Yen; Avram Hershko
The mitotic checkpoint system ensures the fidelity of chromosome segregation by preventing the completion of mitosis in the presence of any misaligned chromosome. When activated, it blocks the initiation of anaphase by inhibiting the ubiquitin ligase anaphase-promoting complex/cyclosome (APC/C). Little is known about the biochemical mechanisms by which this system inhibits APC/C, except for the existence of a mitotic checkpoint complex (MCC) inhibitor of APC/C composed of the APC/C activator Cdc20 associated with the checkpoint proteins Mad2, BubR1, and Bub3. We have been studying the mechanisms of the mitotic checkpoint system in extracts that reproduce its downstream events. We found that inhibitory factors are associated with APC/C in the checkpoint-arrested state, which can be recovered from immunoprecipitates. Only a part of the inhibitory activity was caused by MCC [Braunstein I, Miniowitz S, Moshe Y, Hershko A (2007) Proc Natl Acad Sci USA 104:4870–4875]. Here, we show that during exit from checkpoint, rapid disassembly of MCC takes place while APC/C is still inactive. This observation suggested the possible involvement of multiple factors in the regulation of APC/C by the mitotic checkpoint. We have separated a previously unknown inhibitor of APC/C from MCC. This inhibitor, called mitotic checkpoint factor 2 (MCF2), is associated with APC/C only in the checkpoint-arrested state. The inhibition of APC/C by both MCF2 and MCC was decreased at high concentrations of Cdc20. We propose that both MCF2 and MCC inhibit APC/C by antagonizing Cdc20, possibly by interaction with the Cdc20-binding site of APC/C.
Journal of Biological Chemistry | 2011
Yakir Moshe; Ortal Bar-On; Dvora Ganoth; Avram Hershko
Cell cycle regulation is characterized by alternating activities of cyclin-dependent kinases (CDKs) and of the ubiquitin ligase anaphase promoting complex/cyclosome (APC/C). During S-phase APC/C is inhibited by early mitotic inhibitor 1 (Emi1) to allow the accumulation of cyclins A and B and to prevent re-replication. Emi1 is degraded at prophase by a Plk1-dependent pathway. Recent studies in which the degradation pathway of Emi1 was disrupted have shown that APC/C is activated at mitotic entry despite stabilization of Emi1. These results suggested the possibility of additional mechanisms other than degradation of Emi1, which release APC/C from inhibition by Emi1 upon entry into mitosis. In this study we report one such mechanism, by which the ability of Emi1 to inhibit APC/C is negatively regulated by CDKs. We show that in Plk1-inhibited cells Emi1 is stabilized and phosphorylated, that Emi1 is phosphorylated by CDKs in mitotic but not S-phase cell extracts, and that Emi1 phosphorylation by mitotic cell extracts or purified CDKs markedly reduces the ability of Emi1 to bind and to inhibit APC/C. Finally, we show that the addition of extracts from S-phase cells to extracts from mitotic cells protects Emi1 from CDK-mediated inactivation.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Shirly Miniowitz-Shemtov; Esther Eytan; Dvora Ganoth; Danielle Sitry-Shevah; Elena Dumin; Avram Hershko
The mitotic checkpoint system delays anaphase until all chromosomes are correctly attached to the mitotic spindle. When the checkpoint is turned on, it promotes the formation of the mitotic checkpoint complex (MCC), which inhibits the ubiquitin ligase anaphase-promoting complex/cyclosome (APC/C). MCC is composed of the checkpoint proteins BubR1, Bub3, and Mad2 bound to the APC/C activator Cdc20. When the checkpoint is satisfied, MCC is disassembled and APC/C becomes active. Previous studies have shown that the Mad2-binding protein p31comet promotes the dissociation of Cdc20 from BubR1 in MCC in a process that requires ATP. We now show that a part of MCC dissociation is blocked by inhibitors of cyclin-dependent kinases (Cdks) and that purified Cdk1–cyclin B stimulates this process. The mutation of all eight potential Cdk phosphorylation sites of Cdc20 partially prevented its release from BubR1. Furthermore, p31comet stimulated Cdk-catalyzed phosphorylation of Cdc20 in MCC. It is suggested that the binding of p31comet to Mad2 in MCC may trigger a conformational change in Cdc20 that facilitates its phosphorylation by Cdk, and that the latter process may promote its dissociation from BubR1.
Proceedings of the National Academy of Sciences of the United States of America | 1989
Esther Eytan; Dvora Ganoth; T Armon; Avram Hershko
Proceedings of the National Academy of Sciences of the United States of America | 2006
Gil Bornstein; Dvora Ganoth; Avram Hershko