Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dwight A Clayton is active.

Publication


Featured researches published by Dwight A Clayton.


Archive | 2011

Pre-Conceptual Design of a Fluoride-Salt-Cooled Small Modular Advanced High Temperature Reactor (SmAHTR)

S.R. Greene; Jess C Gehin; David Eugene Holcomb; Juan J. Carbajo; Dan Ilas; Anselmo T Cisneros; Venugopal Koikal Varma; W.R. Corwin; Dane F Wilson; Graydon L. Yoder; A L Qualls; Fred J Peretz; George F. Flanagan; Dwight A Clayton; Eric Craig Bradley; Gary L Bell; John D. Hunn; Peter J Pappano; Mustafa Sacit Cetiner

This document presents the results of a study conducted at Oak Ridge National Laboratory during 2010 to explore the feasibility of small modular fluoride salt-cooled high temperature reactors (FHRs). A preliminary reactor system concept, SmATHR (for Small modular Advanced High Temperature Reactor) is described, along with an integrated high-temperature thermal energy storage or salt vault system. The SmAHTR is a 125 MWt, integral primary, liquid salt cooled, coated particle-graphite fueled, low-pressure system operating at 700 C. The system employs passive decay heat removal and two-out-of-three , 50% capacity, subsystem redundancy for critical functions. The reactor vessel is sufficiently small to be transportable on standard commercial tractor-trailer transport vehicles. Initial transient analyses indicated the transition from normal reactor operations to passive decay heat removal is accomplished in a manner that preserves robust safety margins at all times during the transient. Numerous trade studies and trade-space considerations are discussed, along with the resultant initial system concept. The current concept is not optimized. Work remains to more completely define the overall system with particular emphasis on refining the final fuel/core configuration, salt vault configuration, and integrated system dynamics and safety behavior.


41ST ANNUAL REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION: Volume 34 | 2015

The Benefits of Using Time-Frequency Analysis with Synthetic Aperture Focusing Technique

Austin P Albright; Dwight A Clayton

Improvements in detection and resolution are always desired and needed. There are various instruments available for the inspection of concrete structures that can be used with confidence for detecting different defects. However, more often than not that confidence is heavily dependent on the experience of the operator rather than the clear, objective discernibility of the output of the instrument. The challenge of objective discernment is amplified when the concrete structures contain multiple layers of reinforcement, are of significant thickness, or both, such as concrete structures in nuclear power plants. We seek to improve and extend the usefulness of results produced using the synthetic aperture focusing technique (SAFT) on data collected from thick, complex concrete structures. A secondary goal is to improve existing SAFT results, with regards to repeatedly and objectively identifying defects and/or internal structure of concrete structures. Towards these goals, we are applying the time-frequency te...


Nuclear Technology | 2014

Pyroelectric Energy Scavenging Techniques for Self-Powered Nuclear Reactor Wireless Sensor Networks

S. R. Hunter; Nickolay V. Lavrik; Panos G. Datskos; Dwight A Clayton

Abstract Recent advances in technologies for harvesting waste thermal energy from ambient environments present an opportunity to implement truly wireless sensor nodes in nuclear power plants. These sensors could continue to operate during extended station blackouts and during periods when operation of the plant’s internal power distribution system has been disrupted. The energy required to power the wireless sensors must be generated using energy harvesting techniques from locally available energy sources, and the energy consumption within the sensor circuitry must therefore be low to minimize power and hence the size requirements of the energy harvester. Harvesting electrical energy from thermal energy sources can be achieved using pyroelectric or thermoelectric conversion techniques. Recent modeling and experimental studies have shown that pyroelectric techniques can be cost-competitive with thermoelectrics in self-powered wireless sensor applications and, using new temperature cycling techniques, have the potential to be several times as efficient as thermoelectrics under comparable operating conditions. The development of a new thermal energy harvester concept, based on temperature cycled pyroelectric thermal-to-electrical energy conversion, is outlined. This paper outlines the modeling of cantilever and pyroelectric structures and single-element devices that demonstrate the potential of this technology for the development of high-efficiency thermal-to-electrical energy conversion devices.


42ND ANNUAL REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION: Incorporating the 6th European-American Workshop on Reliability of NDE | 2016

Development of Acoustic Model-Based Iterative Reconstruction Technique for Thick-Concrete Imaging

Hani Almansouri; Dwight A Clayton; Roger A. Kisner; Yarom Polsky; Charlie Bouman; Hector J. Santos-Villalobos

Ultrasound signals have been used extensively for non-destructive evaluation (NDE). However, typical reconstruction techniques, such as the synthetic aperture focusing technique (SAFT), are limited to quasi-homogenous thin media. New ultrasonic systems and reconstruction algorithms are in need for one-sided NDE of non-homogenous thick objects. An application example space is imaging of reinforced concrete structures for commercial nuclear power plants (NPPs). These structures provide important foundation, support, shielding, and containment functions. Identification and management of aging and degradation of concrete structures is fundamental to the proposed long-term operation of NPPs. Another example is geothermal and oil/gas production wells. These multi-layered structures are composed of steel, cement, and several types of soil and rocks. Ultrasound systems with greater penetration range and image quality will allow for better monitoring of the well’s health and prediction of high-pressure hydraulic f...


43RD ANNUAL REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION, VOLUME 36 | 2017

Progress Implementing a Model-Based Iterative Reconstruction Algorithm for Ultrasound Imaging of Thick Concrete

Hani Almansouri; Christi R Johnson; Dwight A Clayton; Yarom Polsky; Charlie Bouman; Hector J. Santos-Villalobos

All commercial nuclear power plants (NPPs) in the United States contain concrete structures. These structures provide important foundation, support, shielding, and containment functions. Identification and management of aging and the degradation of concrete structures is fundamental to the proposed long-term operation of NPPs. Concrete structures in NPPs are often inaccessible and contain large volumes of massively thick concrete. While acoustic imaging using the synthetic aperture focusing technique (SAFT) works adequately well for thin specimens of concrete such as concrete transportation structures, enhancements are needed for heavily reinforced, thick concrete. We argue that image reconstruction quality for acoustic imaging in thick concrete could be improved with Model-Based Iterative Reconstruction (MBIR) techniques. MBIR works by designing a probabilistic model for the measurements (forward model) and a probabilistic model for the object (prior model). Both models are used to formulate an objective...


41ST ANNUAL REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION: Volume 34 | 2015

Ultrasonic linear array validation via concrete test blocks

Kyle Hoegh; Lev Khazanovich; Christopher C. Ferraro; Dwight A Clayton

Oak Ridge National Laboratory (ORNL) comparatively evaluated the ability of a number of NDE techniques to generate an image of the volume of 6.5′ X 5.0′ X 10″ concrete specimens fabricated at the Florida Department of Transportation (FDOT) NDE Validation Facility in Gainesville, Florida. These test blocks were fabricated to test the ability of various NDE methods to characterize various placements and sizes of rebar as well as simulated cracking and non-consolidation flaws. The first version of the ultrasonic linear array device, MIRA [version 1], was one of 7 different NDE equipment used to characterize the specimens. This paper deals with the ability of this equipment to determine subsurface characterizations such as reinforcing steel relative size, concrete thickness, irregularities, and inclusions using Kirchhoff-based migration techniques. The ability of individual synthetic aperture focusing technique (SAFT) B-scan cross sections resulting from self-contained scans are compared with various processing, analysis, and interpretation methods using the various features fabricated in the specimens for validation. The performance is detailed, especially with respect to the limitations and implications for evaluation of a thicker, more heavily reinforced concrete structures.


42ND ANNUAL REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION: Incorporating the 6th European-American Workshop on Reliability of NDE | 2016

Improved synthetic aperture focusing technique results of thick concrete specimens through frequency banding

Dwight A Clayton; Alan M Barker; Austin P Albright; Hector J. Santos-Villalobos

A multitude of concrete-based structures are typically part of a light water reactor (LWR) plant to provide the foundation, support, shielding, and containment functions. This use has made its long-term performance crucial for the safe operation of commercial nuclear power plants (NPPs). Extending reactor life to 60 years and beyond will likely increase susceptibility and severity of known forms of degradation. We seek to improve and extend the usefulness of results produced using the synthetic aperture focusing technique (SAFT) on ultrasonic data collected from thick, complex concrete structures such as in NPPs. Towards these goals, we apply the time-frequency technique of wavelet packet decomposition and reconstruction using a mother wavelet that possesses the exact reconstruction property. However, instead of analyzing the coefficients of each decomposition node, we select and reconstruct specific nodes based on the frequency band it contains to produce a frequency band specific time-series representation. SAFT is then applied to these frequency specific reconstructions allowing SAFT to be used to visualize the reflectivity of a frequency band and that band’s interaction with the contents of the concrete structure. Specially designed and fabricated test specimens can provide realistic flaws that are similar to actual flaws in terms of how they interact with a particular NDE technique. Artificial test blocks allow the isolation of certain testing problems as well as the variation of certain parameters. Because conditions in the laboratory are controlled, the number of unknown variables can be decreased, making it possible to focus on specific aspects, investigate them in detail, and gain further information on the capabilities and limitations of each method. To minimize artifacts caused by boundary effects, the dimensions of the specimens should not be too compact. In this paper, we apply this enhanced SAFT technique to a 2.134 m × 2.134 m × 1.016 m concrete test specimen with twenty deliberately embedded defects.1A multitude of concrete-based structures are typically part of a light water reactor (LWR) plant to provide the foundation, support, shielding, and containment functions. This use has made its long-term performance crucial for the safe operation of commercial nuclear power plants (NPPs). Extending reactor life to 60 years and beyond will likely increase susceptibility and severity of known forms of degradation. We seek to improve and extend the usefulness of results produced using the synthetic aperture focusing technique (SAFT) on ultrasonic data collected from thick, complex concrete structures such as in NPPs. Towards these goals, we apply the time-frequency technique of wavelet packet decomposition and reconstruction using a mother wavelet that possesses the exact reconstruction property. However, instead of analyzing the coefficients of each decomposition node, we select and reconstruct specific nodes based on the frequency band it contains to produce a frequency band specific time-series representat...


Proceedings of SPIE | 2014

Comparative testing of nondestructive examination techniques for concrete structures

Dwight A Clayton; Cyrus M Smith

A multitude of concrete-based structures are typically part of a light water reactor (LWR) plant to provide foundation, support, shielding, and containment functions. Concrete has been used in the construction of nuclear power plants (NPPs) because of three primary properties, its inexpensiveness, its structural strength, and its ability to shield radiation. Examples of concrete structures important to the safety of LWR plants include containment building, spent fuel pool, and cooling towers. Comparative testing of the various NDE concrete measurement techniques requires concrete samples with known material properties, voids, internal microstructure flaws, and reinforcement locations. These samples can be artificially created under laboratory conditions where the various properties can be controlled. Other than NPPs, there are not many applications where critical concrete structures are as thick and reinforced. Therefore, there are not many industries other than the nuclear power plant or power plant industry that are interested in performing NDE on thick and reinforced concrete structures. This leads to the lack of readily available samples of thick and heavily reinforced concrete for performing NDE evaluations, research, and training. The industry that typically performs the most NDE on concrete structures is the bridge and roadway industry. While bridge and roadway structures are thinner and less reinforced, they have a good base of NDE research to support their field NDE programs to detect, identify, and repair concrete failures. This paper will summarize the initial comparative testing of two concrete samples with an emphasis on how these techniques could perform on NPP concrete structures.


Archive | 2012

Roadmap for Nondestructive Evaluation of Reactor Pressure Vessel Research and Development by the Light Water Reactor Sustainability Program

Cyrus M Smith; Randy K Nanstad; Dwight A Clayton; Katie Matlack; Pradeep Ramuhalli; Glenn Light

The Department of Energy s (DOE) Light Water Reactor Sustainability (LWRS) Program is a five year effort which works to develop the fundamental scientific basis to understand, predict, and measure changes in materials and systems, structure, and components as they age in environments associated with continued long-term operations of existing commercial nuclear power reactors. This year, the Materials Aging and Degradation (MAaD) Pathway of this program has placed emphasis on emerging Non-Destructive Evaluation (NDE) methods which support these objectives. DOE funded Research and Development (R&D) on emerging NDE techniques to support commercial nuclear reactor sustainability is expected to begin next year. This summer, the MAaD Pathway invited subject matter experts to participate in a series of workshops which developed the basis for the research plan of these DOE R&D NDE activities. This document presents the results of one of these workshops which are the DOE LWRS NDE R&D Roadmap for Reactor Pressure Vessels (RPV). These workshops made a substantial effort to coordinate the DOE NDE R&D with that already underway or planned by the Electric Power Research Institute (EPRI) and the Nuclear Regulatory Commission (NRC) through their representation at these workshops.


Archive | 2018

Anisotropic modeling and joint-MAP stitching for improved ultrasound model-based iterative reconstruction of large and thick specimens

Hani Almansouri; Singanallur Venkatakrishnan; Dwight A Clayton; Yarom Polsky; Charles Bouman; Hector J. Santos-Villalobos

One-sided non-destructive evaluation (NDE) is widely used to inspect materials, such as concrete structures in nuclear power plants (NPP). A widely used method for one-sided NDE is the synthetic ap...

Collaboration


Dive into the Dwight A Clayton's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cyrus M Smith

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Kyle Hoegh

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar

N. Dianne Bull Ezell

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Justin S. Baba

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pradeep Ramuhalli

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Singanallur Venkatakrishnan

Lawrence Berkeley National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge