Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dylan P. Hartley is active.

Publication


Featured researches published by Dylan P. Hartley.


Journal of Pharmacology and Experimental Therapeutics | 2006

Characterization of Mice Lacking the Multidrug Resistance Protein Mrp2 (Abcc2)

Xiaoyan Chu; John R. Strauss; Michele A. Mariano; Jing Li; Deborah J. Newton; Xiaoxin Cai; Regina W. Wang; Jocelyn Yabut; Dylan P. Hartley; David C. Evans; Raymond Evers

The multidrug resistance protein Mrp2 is an ATP-binding cassette (ABC) transporter mainly expressed in liver, kidney, and intestine. One of the physiological roles of Mrp2 is to transport bilirubin glucuronides from the liver into the bile. Current in vivo models to study Mrp2 are the transporter-deficient and Eisai hyperbilirubinemic rat strains. Previous reports showed hyperbilirubinemia and induction of Mrp3 in the hepatocyte sinusoidal membrane in the mutant rats. In addition, differences in liver cytochrome P450 and UGT1a levels between wild-type and mutant rats were detected. To study whether these compensatory mechanisms were specific to rats, we characterized Mrp2–/– mice. Functional absence of Mrp2 in the knockout mice was demonstrated by showing increased levels of bilirubin and bilirubin glucuronides in serum and urine, a reduction in biliary excretion of bilirubin glucuronides and total glutathione, and a reduction in the biliary excretion of the Mrp2 substrate dibromosulfophthalein. To identify possible compensatory mechanisms in Mrp2–/– mice, the expression levels of 98 phase I, phase II, and transporter genes were compared in liver, kidney, and intestine of male and female Mrp2–/– and control mice. Unlike in Mrp2 mutant rats, no induction of Mrp3 in Mrp2–/– mice was detected. However, Mrp4 mRNA and protein in liver and kidney were increased ∼6- and 2-fold, respectively. Phenotypic analysis of major cytochrome P450-mediated activities in liver microsomes did not show differences between wild-type and Mrp2–/– mice. In conclusion, Mrp2–/– mice are a new valuable tool to study the role of Mrp2 in drug disposition.


Toxicology Letters | 1998

Protection against carbon tetrachloride hepatotoxicity by oleanolic acid is not mediated through metallothionein

Yaping Liu; Dylan P. Hartley; Jie Liu

Oleanolic acid is a triterpenoid compound that has been shown to protect against liver injury produced by some hepatotoxicants. This study was designed to characterize the protective effects of oleanolic acid on carbon tetrachloride-induced hepatotoxicity, and the role of metallothionein in the protection. Oleanolic acid pretreatment (100-400 micromol/kg, s.c.) protected Sprague-Dawley rats and mice from carbon tetrachloride-induced liver injury in a dose- and time-dependent manner, as evidenced by serum alanine aminotransferase and sorbitol dehydrogenase activities, as well as by histopathology. The protection against carbon tetrachloride hepatotoxicity was not evident until animals were pretreated with oleanolic acid 12 h, and lasted for 72 h after a single injection. This suggests that the protection might be due to induction of some adaptive mechanisms. Metallothionein (MT), an acute-phase protein proposed to decrease carbon tetrachloride-induced liver injury, was dramatically induced following oleanolic acid treatment. To examine whether oleanolic acid protection is mediated through MT, MT-I and II knock-out (MT-null) mice were utilized. Oleanolic acid pretreatment increased MT levels in control mice (20-fold), but not in MT-null mice, however, it protected equally against carbon tetrachloride-induced hepatotoxicity in both control and MT-null mice. These data indicate that oleanolic acid is effective in protecting rats and mice from the hepatotoxicity produced by carbon tetrachloride, and the protection is not mediated through induction of MT.


Nucleic Acids Research | 2009

Identification of pregnane-X receptor target genes and coactivator and corepressor binding to promoter elements in human hepatocytes

Niresh Hariparsad; Xiaoyan Chu; Jocelyn Yabut; Paul Labhart; Dylan P. Hartley; Xudong Dai; Raymond Evers

Chromatin immunoprecipitation (ChIP) studies were conducted in human hepatocytes treated with rifampicin in order to identify new pregnane-X receptor (PXR) target genes. Genes, both previously known to be involved and not known to be involved in drug disposition, with PXR response elements (PXREs) located upstream, within or downstream from their potentially associated genes, were identified. Validation experiments identified several new drug disposition genes with PXR binding sites. Of these, only CYP4F12 demonstrated increased binding in the presence of rifampicin. The role of PXR in the basal and inductive response of CYP4F12 was confirmed in hepatocytes in which PXR was silenced. We also assessed the association of PXR-coactivators and -corepressors with known and newly identified PXREs. Both PXR and the steroid receptor coactivator (SRC-1) were found to bind to PXREs in the absence of rifampicin, although binding was stronger after rifampicin treatment. We observed promoter-dependent patterns with respect to the binding of various coactivators and corepressors involved in the regulation of CYP4F12, CYP3A4, CYP2B6, UGT1A1 and P-glycoprotein. In conclusion, our findings indicate that PXR is involved in the regulation of CYP4F12 and that PXR along with SRC1 binds to a broad range of promoters but that many of these are not inducible by rifampicin.


Drug Metabolism Letters | 2011

An In Vitro, High Throughput, Seven CYP Cocktail Inhibition Assay for the Evaluation of New Chemical Entities Using LC-MS/MS

Jennifer Otten; Gary P. Hingorani; Dylan P. Hartley; Scott D. Kragerud; Ronald B. Franklin

A validated method for the simultaneous characterization of xenobiotic compound-mediated inhibition of seven major cytochrome P450 (CYP) enzymes in pooled human liver microsomes through the use of specific CYP probe substrates (cocktail assay) with low protein content, and a rapid, three minute LC-MS/MS analytical method is described. The specific CYP substrates used in this cocktail assay included phenacetin (CYP1A2), bupropion (CYP2B6), amodiaquine (CYP2C8), tolbutamide (CYP2C9), S-mephenytoin (CYP2C19), dextromethorphan (CYP2D6), and midazolam (CYP3A4/5). The LC-MS method incorporated the aforementioned seven CYP substrates along with their respective major metabolites, and one internal standard, labetalol. In a cross-validation analysis, the concentrations of each CYP probe substrate in the assay had minimal effect (i.e., inhibition or activation) on the other CYP activities. Furthermore, the assay conditions for the multiple probe substrate, ie., cocktail assay, were validated against the single probe substrate assay using 18 compounds with known CYP inhibition liabilities and 10 proprietary compounds. The inhibitory constant (Ki) determined with this cocktail assay was highly correlated (R(2) ≥ 0.77 for each individual probe substrate) with that of the single probe substrate assay for all 27 CYP inhibitors. This seven CYP inhibition cocktail assay has increased the efficiency to assess compounds for inhibition of the major CYP isoforms in a high throughput, drug discovery setting.


Toxicology | 2001

Cyproterone acetate induces a cellular tolerance to cadmium in rat liver epithelial cells involving reduced cadmium accumulation

Masufumi Takiguchi; Nathan J. Cherrington; Dylan P. Hartley; Curtis D. Klaassen; Michael P. Waalkes

Several reports indicate that some steroids, in particular sex steroid hormones, can modify cadmium toxicity. We recently reported that cyproterone acetate (CA), a synthetic steroidal antiandrogen that is closely related in structure to progesterone, affects cadmium toxicity in mice. In the present study, we investigated the effect of CA on cadmium toxicity in a rat liver epithelial cell line (TRL 1215) in vitro. Cells were exposed to various concentrations of CA (0,1,10, or 50 microM) for 24 h and subsequently exposed to cadmium (0,50, or 100 microM; as CdCl2) for an additional 24 h. CA pretreatment resulted in a clear decrease in the sensitivity to cadmium. Additional time course study showed CA pretreatment provided protection against cadmium toxicity but only when given for 6 or more hours prior to cadmium exposure. Cellular cadmium accumulation was markedly reduced (60% decrease) in cells pretreated for 6 or more hours with CA. In the presence of protein synthesis inhibitors the protective effect of CA toward cadmium toxicity was abolished. However, in the presence of the GSH synthesis inhibitor, L-buthionine (S,R)-sulfoximide (BSO), the protective effect of CA toward cadmium toxicity remained. CA alone increased metallothionein (MT) levels 2.4-fold, while cadmium (50 microM) alone resulted in a 8.9-fold increase over control. However, cadmium-induced MT synthesis was markedly decreased by CA pretreatment probably because of reduced cadmium accumulation. Analysis of various metal transporters by bDNA signal amplification assay revealed that the ZnT-1 transporter gene, which encodes for a membrane protein associated with zinc efflux, was expressed three-fold more in CA treated cells than control. These data show that CA pretreatment provides protection against cadmium toxicity in vitro and indicate that this protection is due to a decreased accumulation of cadmium rather than through activation of MT synthesis. This decrease of cellular cadmium accumulation appears to be related to events that require protein synthesis and may be due to activation of the genes associated with zinc efflux.


Toxicology and Applied Pharmacology | 2013

Pharmacokinetic drivers of toxicity for basic molecules: Strategy to lower pKa results in decreased tissue exposure and toxicity for a small molecule Met inhibitor

Kevin A. Ford; Dylan P. Hartley; Eric Harstad; Gary Cain; Kirsten Achilles-Poon; Trung Nguyen; Jing Peng; Zhong Zheng; Mark Merchant; Daniel P. Sutherlin; John Gaudino; Robert J. Kaus; Sock Lewin-Koh; Edna F. Choo; Bianca M. Liederer; Donna Dambach

Several toxicities are clearly driven by free drug concentrations in plasma, such as toxicities related to on-target exaggerated pharmacology or off-target pharmacological activity associated with receptors, enzymes or ion channels. However, there are examples in which organ toxicities appear to correlate better with total drug concentrations in the target tissues, rather than with free drug concentrations in plasma. Here we present a case study in which a small molecule Met inhibitor, GEN-203, with significant liver and bone marrow toxicity in preclinical species was modified with the intention of increasing the safety margin. GEN-203 is a lipophilic weak base as demonstrated by its physicochemical and structural properties: high LogD (distribution coefficient) (4.3) and high measured pKa (7.45) due to the basic amine (N-ethyl-3-fluoro-4-aminopiperidine). The physicochemical properties of GEN-203 were hypothesized to drive the high distribution of this compound to tissues as evidenced by a moderately-high volume of distribution (Vd>3l/kg) in mouse and subsequent toxicities of the compound. Specifically, the basicity of GEN-203 was decreased through addition of a second fluorine in the 3-position of the aminopiperidine to yield GEN-890 (N-ethyl-3,3-difluoro-4-aminopiperidine), which decreased the volume of distribution of the compound in mouse (Vd=1.0l/kg), decreased its tissue drug concentrations and led to decreased toxicity in mice. This strategy suggests that when toxicity is driven by tissue drug concentrations, optimization of the physicochemical parameters that drive tissue distribution can result in decreased drug concentrations in tissues, resulting in lower toxicity and improved safety margins.


Chemical Research in Toxicology | 2012

Characterization of rat liver proteins adducted by reactive metabolites of menthofuran.

S. Cyrus Khojasteh; Dylan P. Hartley; Kevin A. Ford; Hirdesh Uppal; Shimako Oishi; Sidney D. Nelson

Pulegone is the major constituent of pennyroyal oil, a folkloric abortifacient that is associated with hepatotoxicity and, in severe cases, death. Cytochrome P450-mediated oxidation of pulegone generates menthofuran, which is further oxidized to form electrophilic reactive intermediates, menthofuran epoxide and the ring-opened γ-ketoenal, both of which can form adducts to hepatocellular proteins. Modification of hepatocellular proteins by the electrophilic reactive intermediates of menthofuran has been implicated in hepatotoxicity caused by pennyroyal oil. Herein, we describe the identification of several proteins that are the likely targets of menthofuran-derived reactive metabolites. These proteins were isolated from the livers of rats treated with a hepatotoxic dose of menthofuran by two-dimensional gel electrophoresis (2D-gel) separation and detected by Western blot analysis using an antiserum developed to detect protein adducts resulting from menthofuran bioactivation. The antibody-reacting proteins were excised from the 2D-gel and subjected to tryptic digestion for analysis of peptide fragments by LC-MS/MS. Although 10 spots were detected by Western blot analysis, only 4 were amenable to characterization by LC-MS/MS: serum albumin, mitochondrial aldehyde dehydrogenase (ALDH2), cytoplasmic malate dehydrogenase (MDH1), and mitochondrial ATP synthase subunit d. No direct adduct was detected, and, therefore, we complemented our analysis with enzyme activity determination. ALDH2 activity decreased by 88%, and ATP synthase complex V activity decreased by 34%, with no activity changes to MDH1. Although the relationship between these reactive metabolite adducted proteins and hepatotoxicity is not clear, these targeted enzymes are known to play critical roles in maintaining cellular homeostasis.


Toxicological Sciences | 2016

Therapeutic Antibody-Induced Vascular Toxicity Due to Off-Target Activation of Nitric Oxide in Cynomolgus Monkeys.

Rama Pai; Ning Ma; Anu V. Connor; Dimitry M. Danilenko; Jacqueline M. Tarrant; Dany Salvail; Lisa Wong; Dylan P. Hartley; Dinah Misner; Eric Stefanich; Yan Wu; Yongmei Chen; Hong Wang; Donna Dambach

PRO304186, a humanized monoclonal antibody targeting soluble interleukin-17 A and F, was developed for autoimmune and inflammatory disease indications. When administered to cynomolgus monkeys PRO304186 induced unexpected adverse effects characterized by clinical signs of hematemesis, hematochezia, and moribundity. Pathology findings included hemorrhage throughout the gastrointestinal tract without any evidence of vascular wall damage or inflammatory cellular infiltration. Mechanistic investigation of these effects revealed mild elevations of serum MCP-1 and IL-12/23 but without a classical proinflammatory profile in PRO304186-treated animals. In vitro studies demonstrated off-target effects on vascular endothelial cells including activation of nitric oxide synthase leading to production of nitric oxide (NO) accompanied by increased mitochondrial membrane depolarization, glutathione depletion, and increased paracellular permeability. Additionally, endothelial cell-PRO304186-conditioned medium reduced myosin light chain phosphorylation in vascular smooth muscle cells. Furthermore, an ex vivo study utilizing segments from cynomolgus aorta and femoral artery confirmed PRO304186-induced endothelium-dependent smooth muscle relaxation and vasodilation mediated via NO. Finally, a single dose of PRO304186 in cynomolgus monkeys induced a rapid and pronounced increase in NO in the portal circulation that preceded a milder elevation of NO in the systemic circulation and corresponded temporally with systemic hypotension; findings consistent with NO-mediated vasodilation leading to hypotension. These changes were associated with non-inflammatory, localized hemorrhage in the gastrointestinal tract consistent with hemodynamic vascular injury associated with intense local vasodilation. Together, these data demonstrate that PRO304186-associated toxicity in monkeys was due to an off-target effect on endothelium that involved regional NO release resulting in severe systemic vasodilation, hypotension, and hemorrhage.


Annual Reports in Medicinal Chemistry | 2003

Chapter 31. Enzyme induction — Mechanisms, assays, and relevance to drug discovery and development

David C. Evans; Dylan P. Hartley; Raymond Evers

Publisher Summary This chapter discusses the mechanisms of enzyme induction and their relevance to drug discovery and development. Enzyme induction is an undesirable drug interaction because this can result in a reduced efficacy of the administered or co-administered drug and can have associated safety implications. Until the mid-1990s, studies to investigate enzyme induction were largely restricted to the cytochrome P450 (CYP) family of enzymes, underlining their important role in the Phase 1 metabolic clearance of pharmaceutical drugs. In particular, these studies tended to focus on the up-regulation of CYP3A4, an enzyme responsible for the metabolism of ≥50% of marketed drugs. The chapter provides information on the mechanism of nuclear receptor mediated gene regulation, the pharmacophore modeling of these receptors, and assays used to assess enzyme induction. It also presents selected prototypic examples of induction from a “victim” perspective because these provide perspective on the role of induction with respect to the loss of clinical efficacy, and hence re-emergence of the disease state for which therapy was initially provided.


Journal of Pharmacology and Experimental Therapeutics | 2002

Organ Distribution of Multidrug Resistance Proteins 1, 2, and 3 (Mrp1, 2, and 3) mRNA and Hepatic Induction of Mrp3 by Constitutive Androstane Receptor Activators in Rats

Nathan J. Cherrington; Dylan P. Hartley; Ning Li; David R. Johnson; Curtis D. Klaassen

Collaboration


Dive into the Dylan P. Hartley's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ning Li

University of Kansas

View shared research outputs
Researchain Logo
Decentralizing Knowledge