Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dzhamilja Safiulina is active.

Publication


Featured researches published by Dzhamilja Safiulina.


Journal of Biological Chemistry | 2009

PGC-1{alpha} and PGC-1{beta} regulate mitochondrial density in neurons.

Przemyslaw Wareski; Annika Vaarmann; Vinay Choubey; Dzhamilja Safiulina; Joanna Liiv; Malle Kuum; Allen Kaasik

Recent studies indicate that regulation of cellular oxidative capacity through enhancing mitochondrial biogenesis may be beneficial for neuronal recovery and survival in human neurodegenerative disorders. The peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) has been shown to be a master regulator of mitochondrial biogenesis and cellular energy metabolism in muscle and liver. The aim of our study was to establish whether PGC-1α and PGC-1β control mitochondrial density also in neurons and if these coactivators could be up-regulated by deacetylation. The results demonstrate that PGC-1α and PGC-1β control mitochondrial capacity in an additive and independent manner. This effect was observed in all studied subtypes of neurons, in cortical, midbrain, and cerebellar granule neurons. We also observed that endogenous neuronal PGC-1α but not PGC-1β could be activated through its repressor domain by suppressing it. Results demonstrate also that overexpression of SIRT1 deacetylase or suppression of GCN5 acetyltransferase activates transcriptional activity of PGC-1α in neurons and increases mitochondrial density. These effects were mediated exclusively via PGC-1α, since overexpression of SIRT1 or suppression of GCN5 was ineffective where PGC-1α was suppressed by short hairpin RNA. Moreover, the results demonstrate that overexpression of PGC-1β or PGC-1α or activation of the latter by SIRT1 protected neurons from mutant α-synuclein- or mutant huntingtin-induced mitochondrial loss. These evidences demonstrate that activation or overexpression of the PGC-1 family of coactivators could be used to compensate for neuronal mitochondrial loss and suggest that therapeutic agents activating PGC-1 would be valuable for treating neurodegenerative diseases in which mitochondrial dysfunction and oxidative damage play an important pathogenic role.


Journal of Biological Chemistry | 2011

Mutant A53T alpha-synuclein induces neuronal death by increasing mitochondrial autophagy.

Vinay Choubey; Dzhamilja Safiulina; Annika Vaarmann; Michal Cagalinec; Przemyslaw Wareski; Malle Kuum; Alexander Zharkovsky; Allen Kaasik

Parkinson disease is characterized by the accumulation of aggregated α-synuclein as the major component of the Lewy bodies. α-Synuclein accumulation in turn leads to compensatory effects that may include the up-regulation of autophagy. Another common feature of Parkinson disease (PD) is mitochondrial dysfunction. Here, we provide evidence that the overactivation of autophagy may be a link that connects the intracellular accumulation of α-synuclein with mitochondrial dysfunction. We found that the activation of macroautophagy in primary cortical neurons that overexpress mutant A53T α-synuclein leads to massive mitochondrial destruction and loss, which is associated with a bioenergetic deficit and neuronal degeneration. No mitochondrial removal or net loss was observed when we suppressed the targeting of mitochondria to autophagosomes by silencing Parkin, overexpressing wild-type Mitofusin 2 and dominant negative Dynamin-related protein 1 or blocking autophagy by silencing autophagy-related genes. The inhibition of targeting mitochondria to autophagosomes or autophagy was also partially protective against mutant A53T α-synuclein-induced neuronal cell death. These data suggest that overactivated mitochondrial removal could be one of the contributing factors that leads to the mitochondrial loss observed in PD models.


Journal of Cellular Physiology | 2006

Loss of mitochondrial membrane potential is associated with increase in mitochondrial volume: Physiological role in neurones

Dzhamilja Safiulina; Vladimir Veksler; Alexander Zharkovsky; Allen Kaasik

Mitochondrial volume homeostasis is a housekeeping cellular function, thought to help regulate oxidative capacity, apoptosis, and mechanical signaling. The volume is mainly regulated by potassium flux into and out of the matrix and controlled by the electrochemical potential. Mitochondrial depolarization will therefore affect this flux but studies showing how have not been consistent, and it is unclear what mitochondrial volume changes also occur. The aim of the present study was to investigate mitochondrial volume changes in permeabilized neurons under various bioenergetic conditions using deconvolution confocal microscopy. Under control conditions, mitochondria in situ appeared rod‐shaped with mean length, surface area, and volume values of 2.29 ± 0.10 µm, 1.41 ± 0.10 µm2, and 0.062 ± 0.006 µm3, respectively (n = 42). Valinomycin, a K+‐selective ionophore, increased mitochondrial volume by 63 ± 22%, although surface area was almost unchanged because mitochondrial shape became more spherical. Pinacidil, an opener of mitochondrial ATP‐dependent channels, produced similar effects, although some mitochondria were insensitive to its action. Mitochondrial depolarization with the protonophore FCCP, or with respiratory chain inhibitors antimycin and sodium azide was associated with a considerable increase in mitochondrial volume (by 75%–140%). Effects of mitochondrial modulators were also studied in intact neurones. Tracking of single mitochondria showed that during 65 ± 2% of their time, mitochondria were motile with an average velocity of 0.19 ± 0.01 µm/s. Antimycin, azide, and FCCP induced mitochondrial swelling and significantly decreased mitochondrial motility. In the presence of pinacidil, swollen mitochondria had reduced their motility, although mitochondria with normal volume stayed motile. These data show that mitochondrial depolarization was followed by significant swelling, which, in turn, impaired mitochondrial trafficking. J. Cell. Physiol. 206: 347–353, 2006.


Journal of Cell Science | 2013

Principles of the mitochondrial fusion and fission cycle in neurons

Michal Cagalinec; Dzhamilja Safiulina; Mailis Liiv; Joanna Liiv; Vinay Choubey; Przemyslaw Wareski; Vladimir Veksler; Allen Kaasik

Summary Mitochondrial fusion–fission dynamics play a crucial role in many important cell processes. These dynamics control mitochondrial morphology, which in turn influences several important mitochondrial properties including mitochondrial bioenergetics and quality control, and they appear to be affected in several neurodegenerative diseases. However, an integrated and quantitative understanding of how fusion–fission dynamics control mitochondrial morphology has not yet been described. Here, we took advantage of modern visualisation techniques to provide a clear explanation of how fusion and fission correlate with mitochondrial length and motility in neurons. Our main findings demonstrate that: (1) the probability of a single mitochondrion splitting is determined by its length; (2) the probability of a single mitochondrion fusing is determined primarily by its motility; (3) the fusion and fission cycle is driven by changes in mitochondrial length and deviations from this cycle serves as a corrective mechanism to avoid extreme mitochondrial length; (4) impaired mitochondrial motility in neurons overexpressing 120Q Htt or Tau suppresses mitochondrial fusion and leads to mitochondrial shortening whereas stimulation of mitochondrial motility by overexpressing Miro-1 restores mitochondrial fusion rates and sizes. Taken together, our results provide a novel insight into the complex crosstalk between different processes involved in mitochondrial dynamics. This knowledge will increase understanding of the dynamic mitochondrial functions in cells and in particular, the pathogenesis of mitochondrial-related neurodegenerative diseases.


Journal of Biological Chemistry | 2007

Mitochondrial Swelling Impairs the Transport of Organelles in Cerebellar Granule Neurons

Allen Kaasik; Dzhamilja Safiulina; Vinay Choubey; Malle Kuum; Alexander Zharkovsky; Vladimir Veksler

Organelle transport in neuronal processes is central to the organization, developmental fate, and functions of neurons. Organelles must be transported through the slender, highly branched neuronal processes, making the axonal transport vulnerable to any perturbation. However, some intracellular structures like mitochondria are able to considerably modify their volume. We therefore hypothesized that swollen mitochondria could impair the traffic of other organelles in neurite shafts. To test this hypothesis, we have investigated the effects of mitochondrial swellers on the organelle traffic. Our data demonstrate that treatment of neurons with potassium ionophore valinomycin led to the fast time-dependent inhibition of organelle movement in cerebellar granule neurons. Similar inhibition was observed in neurons treated with the inhibitors of the mitochondrial respiratory chain, sodium azide and antimycin, which also induced swelling. No decrease in the motility of organelles was observed in cultures treated with inhibitors of ATP production or transport, oligomycin or bongkrekic acid, suggesting that inhibition of the ATP-generating activity itself without swelling does not affect the motility of organelles. The effect of swellers on the traffic was more important in thin processes, thus indicating the role of steric hindrance of swollen mitochondria. We propose that the size and morphology of the transported cargo is also relevant for seamless axonal transport and speculate that mitochondrial swelling could be one of the reasons for impaired organelle transport in neuronal processes.


Autophagy | 2014

BECN1 is involved in the initiation of mitophagy: It facilitates PARK2 translocation to mitochondria

Vinay Choubey; Michal Cagalinec; Joanna Liiv; Dzhamilja Safiulina; Miriam Ann Hickey; Malle Kuum; Mailis Liiv; Tahira Anwar; Eeva-Liisa Eskelinen; Allen Kaasik

The autophagy protein BECN1/Beclin 1 is known to play a central role in autophagosome formation and maturation. The results presented here demonstrate that BECN1 interacts with the Parkinson disease-related protein PARK2. This interaction does not require PARK2 translocation to mitochondria and occurs mostly in cytosol. However, our results suggest that BECN1 is involved in PARK2 translocation to mitochondria because loss of BECN1 inhibits CCCP- or PINK1 overexpression-induced PARK2 translocation. Our results also demonstrate that the observed PARK2-BECN1 interaction is functionally important. Measurements of the level of MFN2 (mitofusin 2), a PARK2 substrate, demonstrate that depletion of BECN1 prevents PARK2 translocation-induced MFN2 ubiquitination and loss. BECN1 depletion also rescues the MFN2 loss-induced suppression of mitochondrial fusion. In sum, our results demonstrate that BECN1 interacts with PARK2 and regulates PARK2 translocation to mitochondria as well as PARK2-induced mitophagy prior to autophagosome formation.


The Journal of Steroid Biochemistry and Molecular Biology | 2003

Dehydroepiandrosterone with other neurosteroids preserve neuronal mitochondria from calcium overload

Allen Kaasik; Dzhamilja Safiulina; Anti Kalda; Alexander Zharkovsky

This current study was designed to test whether the dehydroepiandrosterone (DHEA) and other neurosteroids could improve mitochondrial resistance to ischemic damage and cytoplasmic Ca(2+) overload. To imitate these mechanisms at mitochondrial level we treated the saponin permeabilized neurons either with the respiratory chain inhibitor, 1-methyl-4-phenylpyridinium or raised free extra-mitochondrial [Ca(2+)]. Loss of mitochondrial membrane potential (as an indicator of loss of function) was detected by JC-1. The results demonstrate that DHEA partly prevented Ca(2+) overload induced loss of mitochondrial membrane potential but not the loss of potential induced by the inhibitor of the respiratory chain. A similar effect was observed in the presence of other neurosteroids, pregnenolone, pregnanolone and allopregnanolone. DHEA inhibited also the Ca(2+) accumulation to the mitochondria in the presence of Ca(2+) efflux inhibitors. Thus, in the present work we provide evidence that DHEA with several other neurosteroids protect the mitochondria against intracellular Ca(2+) overload by inhibiting Ca(2+) influx into the mitochondrial matrix.


PLOS Biology | 2016

Role of Mitochondrial Dynamics in Neuronal Development: Mechanism for Wolfram Syndrome.

Michal Cagalinec; Mailis Liiv; Zuzana Hodurova; Miriam Ann Hickey; Annika Vaarmann; Merle Mandel; Akbar Zeb; Vinay Choubey; Malle Kuum; Dzhamilja Safiulina; Eero Vasar; Vladimir Veksler; Allen Kaasik

Deficiency of the protein Wolfram syndrome 1 (WFS1) is associated with multiple neurological and psychiatric abnormalities similar to those observed in pathologies showing alterations in mitochondrial dynamics. The aim of this study was to examine the hypothesis that WFS1 deficiency affects neuronal function via mitochondrial abnormalities. We show that down-regulation of WFS1 in neurons leads to dramatic changes in mitochondrial dynamics (inhibited mitochondrial fusion, altered mitochondrial trafficking, and augmented mitophagy), delaying neuronal development. WFS1 deficiency induces endoplasmic reticulum (ER) stress, leading to inositol 1,4,5-trisphosphate receptor (IP3R) dysfunction and disturbed cytosolic Ca2+ homeostasis, which, in turn, alters mitochondrial dynamics. Importantly, ER stress, impaired Ca2+ homeostasis, altered mitochondrial dynamics, and delayed neuronal development are causatively related events because interventions at all these levels improved the downstream processes. Our data shed light on the mechanisms of neuronal abnormalities in Wolfram syndrome and point out potential therapeutic targets. This work may have broader implications for understanding the role of mitochondrial dynamics in neuropsychiatric diseases.


PLOS Biology | 2013

Energetic and dynamic: how mitochondria meet neuronal energy demands.

Dzhamilja Safiulina; Allen Kaasik

Mitochondria are the power houses of the cell, but unlike the static structures portrayed in textbooks, they are dynamic organelles that move about the cell to deliver energy to locations in need. These organelles fuse with each other then split apart; some appear anchored and others more free to move around, and when damaged they are engulfed by autophagosomes. Together, these processes—mitochondrial trafficking, fusion and fission, and mitophagy—are best described by the term “mitochondrial dynamics”. The molecular machineries behind these events are relatively well known yet the precise dynamics in neurons remains under debate. Neurons pose a peculiar logistical challenge to mitochondria; how do these energy suppliers manage to traffic down long axons to deliver the requisite energy supply to distant parts of the cell? To date, the majority of neuronal mitochondrial dynamics studies have used cultured neurons, Drosophila larvae, zebrafish embryos, with occasional experiments in resting mouse nerves. However, a new study in this issue of PLOS Biology from Marija Sajic and colleagues provides an in vivo look at mitochondrial dynamics along resting and electrically active neurons of live anaesthetized mice.


Journal of Neuroscience Methods | 2004

Method for in situ detection of the mitochondrial function in neurons

Dzhamilja Safiulina; Allen Kaasik; Evelin Seppet; Nadezhda Peet; Alexander Zharkovsky; Enn Seppet

Conventional studies of neuronal mitochondria have been limited to the use of purified preparations of isolated mitochondria, neural cell homogenates, living neurons, or brain slices. However, each technique has several drawbacks. Here, we demonstrate that the neuronal cells membrane can be effectively permeabilized by saponin-treatment and that these permeabilized neurons can be used for qualitative and quantitative assessments of oxygen consumption in combination with registration of mitochondrial membrane potential and free [Ca2+] in the matrix. Under these conditions, the mitochondrial function can be studied without removing the mitochondria from their natural milieu thus avoiding the damage of the associated cytoskeleton and outer membrane. At the same time, the method allows the estimation of the mitochondrial function independently of other processes in the cell, and the easy manipulation of the milieu surrounding the mitochondria. Thus, the presented method offers the opportunity to study the neuronal mitochondrial function in situ and can also be applied to examine the mitochondrial function by other commonly used methods.

Collaboration


Dive into the Dzhamilja Safiulina's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vinay Choubey

Central Drug Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge