Dzmitry Sledneu
Lund University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dzmitry Sledneu.
Journal of Scheduling | 2016
Nadia Brauner; Gerd Finke; Yakov M. Shafransky; Dzmitry Sledneu
The well-known
International Journal of Metaheuristics | 2014
Andrzej Lingas; Mia Persson; Dzmitry Sledneu
conference on current trends in theory and practice of informatics | 2012
Andrzej Lingas; Dzmitry Sledneu
O(n^2)
Algorithmica | 2018
Peter Floderus; Jesper Jansson; Christos Levcopoulos; Andrzej Lingas; Dzmitry Sledneu
international colloquium on automata, languages and programming | 2015
Marek Karpinski; Andrzej Lingas; Dzmitry Sledneu
O(n2) minmax cost algorithm of Lawler (MANAGE SCI 19(5):544–546, 1973) was developed to minimize the maximum cost of jobs processed by a single machine under precedence constraints. We propose two results related to Lawler’s algorithm. Lawler’s algorithm delivers one specific optimal schedule while there can exist other optimal schedules. We present necessary and sufficient conditions for the optimality of a schedule for the problem with strictly increasing cost functions. The second result concerns the same scheduling problem under uncertainty. The cost function for each job is of a special decomposable form and depends on the job completion time and on an additional numerical parameter, for which only an interval of possible values is known. For this problem we derive an
Information Processing Letters | 2013
Marek Karpinski; Andrzej Lingas; Dzmitry Sledneu
theory and applications of models of computation | 2017
Andrzej Lingas; Mia Persson; Dzmitry Sledneu
O(n^2)
Theoretical Computer Science | 2017
Marek Karpinski; Andrzej Lingas; Dzmitry Sledneu
Information Processing Letters | 2015
Peter Floderus; Andrzej Lingas; Mia Persson; Dzmitry Sledneu
O(n2) algorithm for constructing a schedule that minimizes the maximum regret criterion . To obtain this schedule, we use Lawler’s algorithm as a part of our technique.
arXiv: Data Structures and Algorithms | 2012
Marek Karpinski; Andrzej Lingas; Dzmitry Sledneu
A straightforward natural iterative heuristic for correlation clustering in the general setting is to start from singleton clusters and whenever merging two clusters improves the current quality score merge them into a single cluster. We analyse the approximation and complexity aspects of this heuristic and its three simple deterministic or random refinements.