Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where E. Andres Houseman is active.

Publication


Featured researches published by E. Andres Houseman.


PLOS Genetics | 2009

Aging and environmental exposures alter tissue-specific DNA methylation dependent upon CPG island context

Brock C. Christensen; E. Andres Houseman; Carmen J. Marsit; Shichun Zheng; Margaret Wrensch; Joseph L. Wiemels; Heather H. Nelson; Margaret R. Karagas; James F. Padbury; Raphael Bueno; David J. Sugarbaker; Ru Fang Yeh; John K. Wiencke; Karl T. Kelsey

Epigenetic control of gene transcription is critical for normal human development and cellular differentiation. While alterations of epigenetic marks such as DNA methylation have been linked to cancers and many other human diseases, interindividual epigenetic variations in normal tissues due to aging, environmental factors, or innate susceptibility are poorly characterized. The plasticity, tissue-specific nature, and variability of gene expression are related to epigenomic states that vary across individuals. Thus, population-based investigations are needed to further our understanding of the fundamental dynamics of normal individual epigenomes. We analyzed 217 non-pathologic human tissues from 10 anatomic sites at 1,413 autosomal CpG loci associated with 773 genes to investigate tissue-specific differences in DNA methylation and to discern how aging and exposures contribute to normal variation in methylation. Methylation profile classes derived from unsupervised modeling were significantly associated with age (P<0.0001) and were significant predictors of tissue origin (P<0.0001). In solid tissues (n = 119) we found striking, highly significant CpG island–dependent correlations between age and methylation; loci in CpG islands gained methylation with age, loci not in CpG islands lost methylation with age (P<0.001), and this pattern was consistent across tissues and in an analysis of blood-derived DNA. Our data clearly demonstrate age- and exposure-related differences in tissue-specific methylation and significant age-associated methylation patterns which are CpG island context-dependent. This work provides novel insight into the role of aging and the environment in susceptibility to diseases such as cancer and critically informs the field of epigenomics by providing evidence of epigenetic dysregulation by age-related methylation alterations. Collectively we reveal key issues to consider both in the construction of reference and disease-related epigenomes and in the interpretation of potentially pathologically important alterations.


Cancer Epidemiology, Biomarkers & Prevention | 2007

Global DNA methylation level in whole blood as a biomarker in head and neck squamous cell carcinoma.

Debra Ting Hsiung; Carmen J. Marsit; E. Andres Houseman; Karen Eddy; C. Sloane Furniss; Michael D. McClean; Karl T. Kelsey

Background: Head and neck squamous cell carcinoma (HNSCC) is commonly associated with tobacco and alcohol exposures, although dietary factors, particularly folate, and human papillomavirus, are also risk factors. Epigenetic alterations are increasingly implicated in the initiation and progression of cancer. Genome-wide (global) hypomethylation seems to occur in early neoplasia and is a feature of genomic DNA derived from solid tumor tissues, including HNSCC. This study aimed to determine whether global methylation in DNA derived from whole blood, a proxy tissue, is associated with HNSCC and to assess potential modification of this property by environmental or behavioral risk factors. Methods: Global DNA methylation levels were assessed using a modified version of the combined bisulfite restriction analysis of the LRE1 sequence in a population-based case-control study of HNSCC from the Boston area. Results: Hypomethylation lead to a significant 1.6-fold increased risk for disease (95% confidence interval, 1.1-2.4), in models controlled for other HNSCC risk factors. Smoking showed a significant differential effect (P < 0.03) on blood relative methylation between cases and controls. Furthermore, in cases, variant genotype in the MTHFR gene and low folate intake showed relationships with decreased global methylation, whereas in controls, antibody response to human papillomavirus 16 was associated with an increased global methylation level. Discussion: DNA hypomethylation in nontarget tissue was independently associated with HNSCC and had a complex relationship with the known risk factors associated with the genesis of HNSCC. (Cancer Epidemiol Biomarkers Prev 2007;16(1):108–14)


Nature Methods | 2013

Recommendations for the design and analysis of epigenome-wide association studies

Karin B. Michels; Alexandra M. Binder; Sarah Dedeurwaerder; Charles B. Epstein; John M. Greally; Ivo Gut; E. Andres Houseman; Benedetta Izzi; Karl T. Kelsey; Alexander Meissner; Aleksandar Milosavljevic; Kimberly D. Siegmund; Christoph Bock; Rafael A. Irizarry

Epigenome-wide association studies (EWAS) hold promise for the detection of new regulatory mechanisms that may be susceptible to modification by environmental and lifestyle factors affecting susceptibility to disease. Epigenome-wide screening methods cover an increasing number of CpG sites, but the complexity of the data poses a challenge to separating robust signals from noise. Appropriate study design, a detailed a priori analysis plan and validation of results are essential to minimize the danger of false positive results and contribute to a unified approach. Epigenome-wide mapping studies in homogenous cell populations will inform our understanding of normal variation in the methylome that is not associated with disease or aging. Here we review concepts for conducting a stringent and powerful EWAS, including the choice of analyzed tissue, sources of variability and systematic biases, outline analytical solutions to EWAS-specific problems and highlight caveats in interpretation of data generated from samples with cellular heterogeneity.


Journal of the National Cancer Institute | 2011

DNA Methylation, Isocitrate Dehydrogenase Mutation, and Survival in Glioma

Brock C. Christensen; Ashley Smith; Shichun Zheng; Devin C. Koestler; E. Andres Houseman; Carmen J. Marsit; Joseph L. Wiemels; Heather H. Nelson; Margaret R. Karagas; Margaret Wrensch; Karl T. Kelsey; John K. Wiencke

BACKGROUND Although much is known about molecular and chromosomal characteristics that distinguish glioma histological subtypes, DNA methylation patterns of gliomas and their association with other tumor features such as mutation of isocitrate dehydrogenase (IDH) genes have only recently begun to be investigated. METHODS DNA methylation of glioblastomas, astrocytomas, oligodendrogliomas, oligoastrocytomas, ependymomas, and pilocytic astrocytomas (n = 131) from the Brain Tumor Research Center at the University of California San Francisco, as well as nontumor brain tissues (n = 7), was assessed with the Illumina GoldenGate methylation array. Methylation data were subjected to recursively partitioned mixture modeling (RPMM) to derive methylation classes. Differential DNA methylation between tumor and nontumor was also assessed. The association between methylation class and IDH mutation (IDH1 and IDH2) was tested using univariate and multivariable analysis for tumors (n = 95) with available substrate for sequencing. Survival of glioma patients carrying mutant IDH (n = 57) was compared with patients carrying wild-type IDH (n = 38) using a multivariable Cox proportional hazards model and Kaplan-Meier analysis. All statistical tests were two-sided. RESULTS We observed a statistically significant association between RPMM methylation class and glioma histological subtype (P < 2.2 × 10(-16)). Compared with nontumor brain tissues, across glioma tumor histological subtypes, the differential methylation ratios of CpG loci were statistically significantly different (permutation P < .0001). Methylation class was strongly associated with IDH mutation in gliomas (P = 3.0 × 10(-16)). Compared with glioma patients whose tumors harbored wild-type IDH, patients whose tumors harbored mutant IDH showed statistically significantly improved survival (hazard ratio of death = 0.27, 95% confidence interval = 0.10 to 0.72). CONCLUSION The homogeneity of methylation classes for gliomas with IDH mutation, despite their histological diversity, suggests that IDH mutation is associated with a distinct DNA methylation phenotype and an altered metabolic profile in glioma.


BMC Bioinformatics | 2008

Model-based clustering of DNA methylation array data: a recursive-partitioning algorithm for high-dimensional data arising as a mixture of beta distributions.

E. Andres Houseman; Brock C. Christensen; Ru-Fang Yeh; Carmen J. Marsit; Margaret R. Karagas; Margaret Wrensch; Heather H. Nelson; Joseph L. Wiemels; Shichun Zheng; John K. Wiencke; Karl T. Kelsey

BackgroundEpigenetics is the study of heritable changes in gene function that cannot be explained by changes in DNA sequence. One of the most commonly studied epigenetic alterations is cytosine methylation, which is a well recognized mechanism of epigenetic gene silencing and often occurs at tumor suppressor gene loci in human cancer. Arrays are now being used to study DNA methylation at a large number of loci; for example, the Illumina GoldenGate platform assesses DNA methylation at 1505 loci associated with over 800 cancer-related genes. Model-based cluster analysis is often used to identify DNA methylation subgroups in data, but it is unclear how to cluster DNA methylation data from arrays in a scalable and reliable manner.ResultsWe propose a novel model-based recursive-partitioning algorithm to navigate clusters in a beta mixture model. We present simulations that show that the method is more reliable than competing nonparametric clustering approaches, and is at least as reliable as conventional mixture model methods. We also show that our proposed method is more computationally efficient than conventional mixture model approaches. We demonstrate our method on the normal tissue samples and show that the clusters are associated with tissue type as well as age.ConclusionOur proposed recursively-partitioned mixture model is an effective and computationally efficient method for clustering DNA methylation data.


Environmental Health Perspectives | 2007

Dietary Arsenic Exposure in Bangladesh

Molly L. Kile; E. Andres Houseman; Carrie V. Breton; Thomas J. Smith; Quazi Quamruzzaman; Mahmuder Rahman; Golam Mahiuddin; David C. Christiani

Background Millions of people in Bangladesh are at risk of chronic arsenic toxicity from drinking contaminated groundwater, but little is known about diet as an additional source of As exposure. Methods We employed a duplicate diet survey to quantify daily As intake in 47 women residing in Pabna, Bangladesh. All samples were analyzed for total As, and a subset of 35 samples were measured for inorganic arsenic (iAs) using inductively coupled plasma mass spectrometry equipped with a dynamic reaction cell. Results Median daily total As intake was 48 μg As/day [interquartile range (IQR), 33–67) from food and 4 μg As/day (IQR, 2–152) from drinking water. On average, iAs comprised 82% of the total As detected in dietary samples. After adjusting for the estimated inorganic fraction, 34% [95% confidence interval (CI), 21–49%] of all participants exceeded the World Health Organization’s provisional tolerable daily intake (PTDI) of 2.1 μg As/kg-day. Two of the 33 women who used a well with < 50 μg As/L exceeded this recommendation. Conclusions When drinking water concentrations exceeded the Bangladesh drinking water standard of 50 μg As/L, ingested water was the dominant source of exposure. However, as drinking water As concentrations decrease, the relative contribution of dietary As sources becomes more important to ingested dose. The combined intake from both diet and drinking water can cause some individuals to exceed the PTDI in spite of using a tube well that contains < 50 μg As/L.


Environmental Health Perspectives | 2011

In Utero Exposures, Infant Growth, and DNA Methylation of Repetitive Elements and Developmentally Related Genes in Human Placenta

Charlotte Wilhelm-Benartzi; E. Andres Houseman; Matthew A. Maccani; Graham M. Poage; Devin C. Koestler; Scott M. Langevin; Luc Gagne; Carolyn E. Banister; James F. Padbury; Carmen J. Marsit

Background: Fetal programming describes the theory linking environmental conditions during embryonic and fetal development with risk of diseases later in life. Environmental insults in utero may lead to changes in epigenetic mechanisms potentially affecting fetal development. Objectives: We examined associations between in utero exposures, infant growth, and methylation of repetitive elements and gene-associated DNA in human term placenta tissue samples. Methods: Placental tissues and associated demographic and clinical data were obtained from subjects delivering at Women and Infants Hospital in Providence, Rhode Island (USA). Methylation levels of long interspersed nuclear element-1 (LINE-1) and the Alu element AluYb8 were determined in 380 placental samples from term deliveries using bisulfite pyrosequencing. Genomewide DNA methylation profiles were obtained in a subset of 184 samples using the Illumina Infinium HumanMethylation27 BeadArray. Multiple linear regression, model-based clustering methods, and gene set enrichment analysis examined the association between birth weight percentile, demographic variables, and repetitive element methylation and gene-associated CpG locus methylation. Results: LINE-1 and AluYb8 methylation levels were found to be significantly positively associated with birth weight percentile (p = 0.01 and p < 0.0001, respectively) and were found to differ significantly among infants exposed to tobacco smoke and alcohol. Increased placental AluYb8 methylation was positively associated with average methylation among CpG loci found in polycomb group target genes; developmentally related transcription factor binding sites were overrepresented for differentially methylated loci associated with both elements. Conclusions: Our results suggest that repetitive element methylation markers, most notably AluYb8 methylation, may be susceptible to epigenetic alterations resulting from the intrauterine environment and play a critical role in mediating placenta function, and may ultimately inform on the developmental basis of health and disease.


Epigenetics | 2013

Blood-based profiles of DNA methylation predict the underlying distribution of cell types: a validation analysis

Devin C. Koestler; Brock C. Christensen; Margaret R. Karagas; Carmen J. Marsit; Scott M. Langevin; Karl T. Kelsey; John K. Wiencke; E. Andres Houseman

The potential influence of underlying differences in relative leukocyte distributions in studies involving blood-based profiling of DNA methylation is well recognized and has prompted development of a set of statistical methods for inferring changes in the distribution of white blood cells using DNA methylation signatures. However, the extent to which this methodology can accurately predict cell-type proportions based on blood-derived DNA methylation data in a large-scale epigenome-wide association study (EWAS) has yet to be examined. We used publicly available data deposited in the Gene Expression Omnibus (GEO) database (accession number GSE37008), which consisted of both blood-derived epigenome-wide DNA methylation data assayed using the Illumina Infinium HumanMethylation27 BeadArray and complete blood cell (CBC) counts among a community cohort of 94 non-diseased individuals. Constrained projection (CP) was used to obtain predictions of the proportions of lymphocytes, monocytes and granulocytes for each of the study samples based on their DNA methylation signatures. Our findings demonstrated high consistency between the average CBC-derived and predicted percentage of monocytes and lymphocytes (17.9% and 17.6% for monocytes and 82.1% and 81.4% for lymphocytes), with root mean squared error (rMSE) of 5% and 6%, for monocytes and lymphocytes, respectively. Similarly, there was moderate-high correlation between the CP-predicted and CBC-derived percentages of monocytes and lymphocytes (0.60 and 0.61, respectively), and these results were robust to the number of leukocyte differentially methylated regions (L-DMRs) used for CP prediction. These results serve as further validation of the CP approach and highlight the promise of this technique for EWAS where DNA methylation is profiled using whole-blood genomic DNA.


PLOS Genetics | 2010

Breast Cancer DNA Methylation Profiles Are Associated with Tumor Size and Alcohol and Folate Intake

Brock C. Christensen; Karl T. Kelsey; Shichun Zheng; E. Andres Houseman; Carmen J. Marsit; Margaret Wrensch; Joseph L. Wiemels; Heather H. Nelson; Margaret R. Karagas; Lawrence H. Kushi; Marilyn L. Kwan; John K. Wiencke

Although tumor size and lymph node involvement are the current cornerstones of breast cancer prognosis, they have not been extensively explored in relation to tumor methylation attributes in conjunction with other tumor and patient dietary and hormonal characteristics. Using primary breast tumors from 162 (AJCC stage I–IV) women from the Kaiser Division of Research Pathways Study and the Illumina GoldenGate methylation bead-array platform, we measured 1,413 autosomal CpG loci associated with 773 cancer-related genes and validated select CpG loci with Sequenom EpiTYPER. Tumor grade, size, estrogen and progesterone receptor status, and triple negative status were significantly (Q-values <0.05) associated with altered methylation of 209, 74, 183, 69, and 130 loci, respectively. Unsupervised clustering, using a recursively partitioned mixture model (RPMM), of all autosomal CpG loci revealed eight distinct methylation classes. Methylation class membership was significantly associated with patient race (P<0.02) and tumor size (P<0.001) in univariate tests. Using multinomial logistic regression to adjust for potential confounders, patient age and tumor size, as well as known disease risk factors of alcohol intake and total dietary folate, were all significantly (P<0.0001) associated with methylation class membership. Breast cancer prognostic characteristics and risk-related exposures appear to be associated with gene-specific tumor methylation, as well as overall methylation patterns.


Environmental Health Perspectives | 2007

Ranking cancer risks of organic hazardous air pollutants in the United States.

Miranda Loh; Jonathan I. Levy; John D. Spengler; E. Andres Houseman; Deborah H. Bennett

Background In this study we compared cancer risks from organic hazardous air pollutants (HAPs) based on total personal exposure summed across different microenvironments and exposure pathways. Methods We developed distributions of personal exposure concentrations using field monitoring and modeling data for inhalation and, where relevant, ingestion pathways. We calculated risks for a nonoccupationally exposed and nonsmoking population using U.S. Environmental Protection Agency (EPA) and California Office of Environmental Health and Hazard Assessment (OEHHA) unit risks. We determined the contribution to risk from indoor versus outdoor sources using indoor/outdoor ratios for gaseous compounds and the infiltration factor for particle-bound compounds. Results With OEHHA’s unit risks, the highest ranking compounds based on the population median are 1,3-butadiene, formaldehyde, benzene, and dioxin, with risks on the order of 10−4–10−5. The highest risk compounds with the U.S. EPA unit risks were dioxin, benzene, formaldehyde, and chloroform, with risks on a similar order of magnitude. Although indoor exposures are responsible for nearly 70% of risk using OEHHA’s unit risks, when infiltration is accounted for, inhalation of outdoor sources contributed 50% to total risk, on average. Additionally, 15% of risk resulted from exposures through food, mainly due to dioxin. Conclusions Most of the polycyclic aromatic hydrocarbon, benzene, acetaldehyde, and 1,3-butadiene risk came from outdoor sources, whereas indoor sources were primarily responsible for chloroform, formaldehyde, and naphthalene risks. The infiltration of outdoor pollution into buildings, emissions from indoor sources, and uptake through food are all important to consider in reducing overall personal risk to HAPs.

Collaboration


Dive into the E. Andres Houseman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shichun Zheng

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge