Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where E. Antonio Chiocca is active.

Publication


Featured researches published by E. Antonio Chiocca.


Cancer Research | 2008

microRNA-7 Inhibits the Epidermal Growth Factor Receptor and the Akt Pathway and Is Down-regulated in Glioblastoma

Benjamin Kefas; Jakub Godlewski; Laurey Comeau; Yunqing Li; Roger Abounader; Michael P. Hawkinson; Jeongwu Lee; Howard A. Fine; E. Antonio Chiocca; Sean E. Lawler; Benjamin Purow

microRNAs are noncoding RNAs inhibiting expression of numerous target genes, and a few have been shown to act as oncogenes or tumor suppressors. We show that microRNA-7 (miR-7) is a potential tumor suppressor in glioblastoma targeting critical cancer pathways. miR-7 potently suppressed epidermal growth factor receptor expression, and furthermore it independently inhibited the Akt pathway via targeting upstream regulators. miR-7 expression was down-regulated in glioblastoma versus surrounding brain, with a mechanism involving impaired processing. Importantly, transfection with miR-7 decreased viability and invasiveness of primary glioblastoma lines. This study establishes miR-7 as a regulator of major cancer pathways and suggests that it has therapeutic potential for glioblastoma.


Nature Medicine | 1999

Oncolytic virus therapy of multiple tumors in the brain requires suppression of innate and elicited antiviral responses.

Keiro Ikeda; Tomotsugu Ichikawa; Hiroaki Wakimoto; Jonathan S. Silver; Thomas S. Deisboeck; Dianne M. Finkelstein; Griffith R. Harsh; David N. Louis; Raymond T. Bartus; Fred H. Hochberg; E. Antonio Chiocca

The occurrence of multiple tumors in an organ heralds a rapidly fatal course. Although intravascular administration may deliver oncolytic viruses/vectors to each of these tumors, its efficiency is impeded by an antiviral activity present in complement-depleted plasma of rodents and humans. Here, this activity was shown to interact with complement in a calcium-dependent fashion, and antibody neutralization studies indicated preimmune IgM has a contributing role. Short-term exposure to cyclophosphamide (CPA) partially suppressed this activity in rodents and humans. At longer time points, cyclophosphamide also abrogated neutralizing antibody responses. Cyclophosphamide treatment of rats with large single or multiple intracerebral tumors substantially increased viral survival and propagation, leading to neoplastic regression.


Molecular Cell | 2010

MicroRNA-451 Regulates LKB1/AMPK Signaling and Allows Adaptation to Metabolic Stress in Glioma Cells

Jakub Godlewski; Michał Nowicki; Agnieszka Bronisz; Gerard J. Nuovo; Jeff Palatini; Michael De Lay; James R. Van Brocklyn; Michael C. Ostrowski; E. Antonio Chiocca; Sean E. Lawler

To sustain tumor growth, cancer cells must be able to adapt to fluctuations in energy availability. We have identified a single microRNA that controls glioma cell proliferation, migration, and responsiveness to glucose deprivation. Abundant glucose allows relatively high miR-451 expression, promoting cell growth. In low glucose, miR-451 levels decrease, slowing proliferation but enhancing migration and survival. This allows cells to survive metabolic stress and seek out favorable growth conditions. In glioblastoma patients, elevated miR-451 is associated with shorter survival. The effects of miR-451 are mediated by LKB1, which it represses through targeting its binding partner, CAB39 (MO25 alpha). Overexpression of miR-451 sensitized cells to glucose deprivation, suggesting that its downregulation is necessary for robust activation of LKB1 in response to metabolic stress. Thus, miR-451 is a regulator of the LKB1/AMPK pathway, and this may represent a fundamental mechanism that contributes to cellular adaptation in response to altered energy availability.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Cyclophosphamide enhances glioma virotherapy by inhibiting innate immune responses.

Giulia Fulci; Laura M. Breymann; Davide Gianni; Kazuhiko Kurozomi; Sarah S. Rhee; Jianhua Yu; Balveen Kaur; David N. Louis; Ralph Weissleder; Michael A. Caligiuri; E. Antonio Chiocca

Clinical trials are testing oncolytic viruses (OVs) as therapies for cancer. We have shown that animals that have brain tumors and are treated with a herpes simplex virus (HSV)-derived OV live significantly longer when cyclophosphamide (CPA) is preadministered. Here, we explore the mechanisms behind this finding. In a syngeneic rat glioma model, intratumoral HSV administration is associated with rapid increase of natural killer cells, microglia/macrophages (CD68+ and CD163+), and IFN-γ. Pretreatment with CPA enhances HSV replication and oncolysis and reduces an HSV-mediated increase in CD68+ and CD163+ cells and intratumoral IFN-γ. Molecular imaging shows CPA pretreatment to inhibit HSV-induced infiltration of tumor-associated phagocytic cells. Our results reveal molecular and cellular mechanisms that inhibit intratumoral spread of HSV and suggest a therapeutic path for improving the efficacy of virotherapy as a treatment for cancer.


Biochimica et Biophysica Acta | 1998

Measuring transferrin receptor gene expression by NMR imaging

Anna Moore; James P. Basilion; E. Antonio Chiocca; Ralph Weissleder

The human transferrin receptor (hTfR) has been used as a model molecular target to direct therapeutic agents to tumor cells and to shuttle drugs across the blood-brain-barrier. We show in the current study that receptor expression and regulation can be visualized by NMR imaging, when the receptor is probed with a sterically protected iron containing magnetic hTfR probe. We were able to demonstrate that the novel receptor probe was an iron source that could enter the cells via the hTfR but did not play an immediate role in iron downregulation of hTfR within incubation times tested. Using genetically engineered rat 9L gliosarcoma cell lines with three different forms of the hTfR, we also demonstrated that receptor expression and regulation can be visualized by NMR imaging using the probe. This research provides proof of the principle that it is possible to image receptor gene expression and regulation and it demonstrates that it may be possible to image gene transfer in vivo.


Cancer Research | 2006

Tumor Stromal-Derived Factor-1 Recruits Vascular Progenitors to Mitotic Neovasculature, where Microenvironment Influences Their Differentiated Phenotypes

Manish K. Aghi; Kenneth Cohen; Rachael J. Klein; David T. Scadden; E. Antonio Chiocca

Mechanisms underlying tumor vasculogenesis, the homing and engraftment of bone marrow-derived vascular progenitors, remain undefined. We hypothesized that tumor cell-secreted factors regulate vasculogenesis. We studied vasculogenic and nonvasculogenic intracranial murine gliomas. A PCR screen identified stromal-derived factor-1 (SDF-1/CXCL12) and vascular endothelial growth factor (VEGF) expression by vasculogenic glioma cells and spontaneously arising vasculogenic tumors in NF1+/-:Trp53+/- mice, but not by nonvasculogenic glioma cells. Enforced SDF-1, not VEGF, expression in nonvasculogenic cells caused vasculogenesis. Combined SDF-1 and VEGF expression augmented vasculogenesis over SDF-1 expression alone. Blocking SDF-1 receptor CXCR4 reduced short-term homing and long-term engraftment of vascular progenitors. Implanting tumor cells secreting SDF-1 was therefore necessary and sufficient to incorporate marrow-derived precursors into tumor endothelium. SDF-1 seemed to exert these effects by acting locally intratumorally and did not cause an efflux of marrow-derived progenitors into circulation. Tumor microenvironment determined additional fates of marrow-derived cells. Hypoxia, observed with ectopic s.c. murine tumors at levels approximating that of intracranial human glioblastoma, interacted with tumor-secreted SDF-1 to expand engrafted vascular progenitor differentiated phenotypes to include pericytes as well as endothelium. In contrast, less hypoxic orthotopic intracranial murine gliomas contained only marrow-derived endothelium without marrow-derived pericytes. Furthermore, we found that vasculogenesis is significant for tumors because it generates endothelium with a higher mitotic index than endothelium derived from local sources. Although CXCR4 blockade selectively targeted endothelium generated by vasculogenesis, completely inhibiting vessel formation may require combination therapy targeting locally derived and marrow-derived endothelium.


The Journal of Neuroscience | 2009

The neuronal microRNA miR-326 acts in a feedback loop with Notch and has therapeutic potential against brain tumors

Benjamin Kefas; Laurey Comeau; Desiree H. Floyd; Oleksandr Seleverstov; Jakub Godlewski; Tom Schmittgen; Jinmai Jiang; Charles G. diPierro; Yunqing Li; E. Antonio Chiocca; Jeongwu Lee; Howard A. Fine; Roger Abounader; Sean E. Lawler; Benjamin Purow

Little is known of microRNA interactions with cellular pathways. Few reports have associated microRNAs with the Notch pathway, which plays key roles in nervous system development and in brain tumors. We previously implicated the Notch pathway in gliomas, the most common and aggressive brain tumors. While investigating Notch mediators, we noted microRNA-326 was upregulated following Notch-1 knockdown. This neuronally expressed microRNA was not only suppressed by Notch but also inhibited Notch proteins and activity, indicating a feedback loop. MicroRNA-326 was downregulated in gliomas via decreased expression of its host gene. Transfection of microRNA-326 into both established and stem cell-like glioma lines was cytotoxic, and rescue was obtained with Notch restoration. Furthermore, miR-326 transfection reduced glioma cell tumorigenicity in vivo. Additionally, we found microRNA-326 partially mediated the toxic effects of Notch knockdown. This work demonstrates a microRNA-326/Notch axis, shedding light on the biology of Notch and suggesting microRNA-326 delivery as a therapy.


Cancer Research | 2005

An oncolytic HSV-1 mutant expressing ICP34.5 under control of a nestin promoter increases survival of animals even when symptomatic from a brain tumor.

Hirokazu Kambara; Hideyuki Okano; E. Antonio Chiocca; Yoshinaga Saeki

Oncolytic herpes simplex virus-1 (HSV-1) mutants possessing mutations in the ICP34.5 and ICP6 genes have proven safe through clinical trials. However, ICP34.5-null viruses may grow poorly in cells due to their inability to prevent host-cell shut-off of protein synthesis caused by hyperphosphorylation of eukaryotic initiation factor 2alpha. To increase tumor selectivity, glioma-selective expression of ICP34.5 in the context of oncolysis may be useful. Malignant gliomas remain an incurable disease. One molecular marker of malignant gliomas is expression of the intermediate filament nestin. Expression of nestin mRNA was confirmed in 6 of 6 human glioma lines and in 3 of 4 primary glioma cells. Normal human astrocytes were negative. A novel glioma-selective HSV-1 mutant (rQNestin34.5) was thus engineered by expressing ICP34.5 under control of a synthetic nestin promoter. Replication, cellular propagation, and cytotoxicity of rQNestin34.5 were significantly enhanced in cultured and primary human glioma cell lines compared with control virus. However, replication, cellular propagation, and cytotoxicity of rQNestin34.5 in normal human astrocytes remained quantitatively similar to that of control virus. In glioma cell lines infected with rQNestin34.5, the level of phospho-eukaryotic initiation factor 2alpha was lower than that of cells infected by control rHsvQ1, confirming selective ICP34.5 expression in glioma cells. In vivo, rQNestin34.5 showed significantly more potent inhibition of tumor growth compared with control virus. Treatment in the brain tumor model was instituted on animals display of neurologic symptoms, which usually led to rapid demise. rQNestin34.5 treatment doubled the life span of these animals. These results show that rQNestin34.5 could be a potent agent for the treatment of malignant glioma.


Journal of Virology | 2000

Complement Depletion Facilitates the Infection of Multiple Brain Tumors by an Intravascular, Replication-Conditional Herpes Simplex Virus Mutant

Keiro Ikeda; Hiroaki Wakimoto; Tomotsugu Ichikawa; Sarah Jhung; Fred H. Hochberg; David N. Louis; E. Antonio Chiocca

Intravascular routes of administration can provide a means to target gene- and virus-based therapies to multiple tumor foci located within an organ, such as the brain. However, we demonstrate here that rodent plasma inhibits cell transduction by replication-conditional (oncolytic) herpes simplex viruses (HSV), replication-defective HSV, and adenovirus vectors. In vitro depletion of complement with mild heat treatment or in vivo depletion by treatment of athymic rats with cobra venom factor (CVF) partially reverses this effect. Without CVF, inhibition of cell infection by HSV is observed at plasma dilution as high as 1:32, while plasma from CVF-treated animals displays anti-HSV activity at lower dilutions (1:8). When applied to the therapy of intracerebral brain tumors, in vivo complement depletion facilitates the initial infection (assayed at the 2-day time point) by an intra-arterial replication-conditional HSV of tumor cells, located within three separate and distinct human glioma masses. However, at the 4-day time point, no propagation of HSV from initially infected tumor cells could be observed. Previously, we have shown that the immunosuppressive agent, cyclophosphamide (CPA), facilitates the in vivo propagation of an oncolytic HSV, delivered intravascularly, within infected multiple intracerebral masses, by inhibition of both innate and elicited anti-HSV neutralizing antibody response (K. Ikeda et al., Nat. Med. 5:881-889, 1999). In this study, we thus show that the addition of CPA to the CVF treatment results in a significant increase in viral propagation within infected tumors, measured at the 4-day time period. The concerted action of CVF and CPA significantly increases the life span of athymic rodents harboring three separate and large glioma xenografts after treatment with intravascular, oncolytic HSV. Southern analysis of viral genomes analyzed by PCR reveals the presence of the oncolytic virus in the brains, livers, spleens, kidneys, and intestine of treated animals, although none of these tissues displays evidence of HSV-mediated gene expression. In light of clinical trials of oncolytic HSV for malignant brain tumors, these findings suggest that antitumor efficacy may be limited by the host innate and elicited humoral responses.


Brain Pathology | 1995

Gene Therapy for Brain Tumors

Christof M. Kramm; Miguel Sena-Esteves; Faith H. Barnett; Nikolai G. Rainov; Deborah E. Schuback; John S. Yu; Peter A. Pechan; Werner Paulus; E. Antonio Chiocca; Xandra O. Breakefield

Gene therapy has opened new doors for treatment of neoplastic diseases. This new approach seems very attractive, especially for glioblastomas, since treatment of these brain tumors has failed using conventional therapy regimens. Many different modes of gene therapy for brain tumors have been tested in culture and in vivo. Many of these approaches are based on previously established anti‐neoplastic principles, like prodrug activating enzymes, inhibition of tumor neovascularization, and enhancement of the normally weak anti‐tumor immune response. Delivery of genes to tumor cells has been mediated by a number of viral and synthetic vectors. The most widely used paradigm is based on the activation of ganciclovir to a cytotoxic compound by a viral enzyme, thymidine kinase, which is expressed by tumor cells, after the gene has been introduced by a retroviral vector. This paradigm has proven to be a potent therapy with minimal side effects in several rodent brain tumor models, and has proceeded to phase 1 clinical trials. In this review, current gene therapy strategies and vector systems for treatment of brain tumors will be described and discussed in light of further developments needed to make this new treatment modality clinically efficacious.

Collaboration


Dive into the E. Antonio Chiocca's collaboration.

Top Co-Authors

Avatar

Sean E. Lawler

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jakub Godlewski

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Agnieszka Bronisz

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michał Nowicki

Poznan University of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Hiroshi Nakashima

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge