Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where E Bentefour is active.

Publication


Featured researches published by E Bentefour.


Physics in Medicine and Biology | 2013

Proton radiography and proton computed tomography based on time-resolved dose measurements

M Testa; Joost M Verburg; Mark Rose; Chul Hee Min; Shikui Tang; E Bentefour; Harald Paganetti; Hsiao-Ming Lu

We present a proof of principle study of proton radiography and proton computed tomography (pCT) based on time-resolved dose measurements. We used a prototype, two-dimensional, diode-array detector capable of fast dose rate measurements, to acquire proton radiographic images expressed directly in water equivalent path length (WEPL). The technique is based on the time dependence of the dose distribution delivered by a proton beam traversing a range modulator wheel in passive scattering proton therapy systems. The dose rate produced in the medium by such a system is periodic and has a unique pattern in time at each point along the beam path and thus encodes the WEPL. By measuring the time dose pattern at the point of interest, the WEPL to this point can be decoded. If one measures the time–dose patterns at points on a plane behind the patient for a beam with sufficient energy to penetrate the patient, the obtained 2D distribution of the WEPL forms an image. The technique requires only a 2D dosimeter array and it uses only the clinical beam for a fraction of second with negligible dose to patient. We first evaluated the accuracy of the technique in determining the WEPL for static phantoms aiming at beam range verification of the brain fields of medulloblastoma patients. Accurate beam ranges for these fields can significantly reduce the dose to the cranial skin of the patient and thus the risk of permanent alopecia. Second, we investigated the potential features of the technique for real-time imaging of a moving phantom. Real-time tumor tracking by proton radiography could provide more accurate validations of tumor motion models due to the more sensitive dependence of proton beam on tissue density compared to x-rays. Our radiographic technique is rapid (~100 ms) and simultaneous over the whole field, it can image mobile tumors without the problem of interplay effect inherently challenging for methods based on pencil beams. Third, we present the reconstructed pCT images of a cylindrical phantom containing inserts of different materials. As for all conventional pCT systems, the method illustrated in this work produces tomographic images that are potentially more accurate than x-ray CT in providing maps of proton relative stopping power (RSP) in the patient without the need for converting x-ray Hounsfield units to proton RSP. All phantom tests produced reasonable results, given the currently limited spatial and time resolution of the prototype detector. The dose required to produce one radiographic image, with the current settings, is ~0.7 cGy. Finally, we discuss a series of techniques to improve the resolution and accuracy of radiographic and tomographic images for the future development of a full-scale detector.


Physics in Medicine and Biology | 2012

Effect of tissue heterogeneity on an in vivo range verification technique for proton therapy

E Bentefour; Tang Shikui; D. Prieels; Hsiao-Ming Lu

It was proposed recently that time-resolved dose measurements during proton therapy treatment by passively scattered beams may be used for in vivo range verification. The method was shown to work accurately in a water tank. In this paper, we further evaluated the potential of the method for more clinically relevant situations where proton beams must pass through regions with significant tissue heterogeneities. Specifically, we considered prostate treatment where the use of anterior or anterior- oblique fields was recently proposed in order to reduce rectal dose by taking advantage of the sharp distal fall-off of the Bragg peak. These beam portals pass through various parts of pubic bone and potential air cavities in the bladder and bowels. Using blocks of materials with densities equivalent to bone, air, etc, arranged in the water tank in relevant configurations, we tested the robustness of the method against range shifting and range mixing. In the former, the beam range is changed uniformly by changes in tissue density in the beam path, while in the latter, variations in tissue heterogeneities across the beam cross section causes the mixing of beam energies downstream, as often occurs when the beam travels along the interface of materials with significantly different densities. We demonstrated that in the region of interest, the method can measure water-equivalent path length with accuracy better than ±0.5 mm for pure range shifting and still reasonable accuracy for range mixing between close beam energies. In situations with range mixing between significantly different beam energies, the dose rate profiles may be simulated for verifying the beam range. We also found that the above performances can be obtained with very small amount of dose (<0.5 cGy), if silicon diodes are used as detectors. This makes the method suitable for in vivo range verification prior to each treatment delivery.


Physics in Medicine and Biology | 2016

Clinical commissioning of an in vivo range verification system for prostate cancer treatment with anterior and anterior oblique proton beams

M Hoesl; S Deepak; M. Moteabbed; G Jassens; J Orban; Yang-Kyun Park; Katia Parodi; E Bentefour; Hsiao-Ming Lu

The purpose of this work is the clinical commissioning of a recently developed in vivo range verification system (IRVS) for treatment of prostate cancer by anterior and anterior oblique proton beams. The IRVS is designed to perform a complete workflow for pre-treatment range verification and adjustment. It contains specifically designed dosimetry and electronic hardware and a specific software for workflow control with database connection to the treatment and imaging systems. An essential part of the IRVS system is an array of Si-diode detectors, designed to be mounted to the endorectal water balloon routinely used for prostate immobilization. The diodes can measure dose rate as function of time from which the water equivalent path length (WEPL) and the dose received are extracted. The former is used for pre-treatment beam range verification and correction, if necessary, while the latter is to monitor the dose delivered to patient rectum during the treatment and serves as an additional verification. The entire IRVS workflow was tested for anterior and 30 degree inclined proton beam in both solid water and anthropomorphic pelvic phantoms, with the measured WEPL and rectal doses compared to the treatment plan. Gafchromic films were also used for measurement of the rectal dose and compared to IRVS results. The WEPL measurement accuracy was in the order of 1 mm and after beam range correction, the dose received by the rectal wall were 1.6% and 0.4% from treatment planning, respectively, for the anterior and anterior oblique field. We believe the implementation of IRVS would make the treatment of prostate with anterior proton beams more accurate and reliable.


Medical Physics | 2015

Validation of an in-vivo proton beam range check method in an anthropomorphic pelvic phantom using dose measurements.

E Bentefour; Shikui Tang; E Cascio; M Testa; Deepak Samuel; D. Prieels; Bernard Gottschalk; Hsiao-Ming Lu

PURPOSE In-vivo dosimetry and beam range verification in proton therapy could play significant role in proton treatment validation and improvements. In-vivo beam range verification, in particular, could enable new treatment techniques one of which could be the use of anterior fields for prostate treatment instead of opposed lateral fields as in current practice. This paper reports validation study of an in-vivo range verification method which can reduce the range uncertainty to submillimeter levels and potentially allow for in-vivo dosimetry. METHODS An anthropomorphic pelvic phantom is used to validate the clinical potential of the time-resolved dose method for range verification in the case of prostrate treatment using range modulated anterior proton beams. The method uses a 3 × 4 matrix of 1 mm diodes mounted in water balloon which are read by an ADC system at 100 kHz. The method is first validated against beam range measurements by dose extinction measurements. The validation is first completed in water phantom and then in pelvic phantom for both open field and treatment field configurations. Later, the beam range results are compared with the water equivalent path length (WEPL) values computed from the treatment planning system XIO. RESULTS Beam range measurements from both time-resolved dose method and the dose extinction method agree with submillimeter precision in water phantom. For the pelvic phantom, when discarding two of the diodes that show sign of significant range mixing, the two methods agree with ±1 mm. Only a dose of 7 mGy is sufficient to achieve this result. The comparison to the computed WEPL by the treatment planning system (XIO) shows that XIO underestimates the protons beam range. Quantifying the exact XIO range underestimation depends on the strategy used to evaluate the WEPL results. To our best evaluation, XIO underestimates the treatment beam range between a minimum of 1.7% and maximum of 4.1%. CONCLUSIONS Time-resolved dose measurement method satisfies the two basic requirements, WEPL accuracy and minimum dose, necessary for clinical use, thus, its potential for in-vivo protons range verification. Further development is needed, namely, devising a workflow that takes into account the limits imposed by proton range mixing and the susceptibility of the comparison of measured and expected WEPLs to errors on the detector positions. The methods may also be used for in-vivo dosimetry and could benefit various proton therapy treatments.


Physics in Medicine and Biology | 2017

Investigation of time-resolved proton radiography using x-ray flat-panel imaging system

K-W Jee; Rongxiao Zhang; E Bentefour; P J Doolan; E Cascio; G Sharp; J Flanz; H-M Lu

Proton beam therapy benefits from the Bragg peak and delivers highly conformal dose distributions. However, the location of the end-of-range is subject to uncertainties related to the accuracy of the relative proton stopping power estimates and thereby the water-equivalent path length (WEPL) along the beam. To remedy the range uncertainty, an in vivo measurement of the WEPL through the patient, i.e. a proton-range radiograph, is highly desirable. Towards that goal, we have explored a novel method of proton radiography based on the time-resolved dose measured by a flat panel imager (FPI). A 226 MeV pencil beam and a custom-designed range modulator wheel (MW) were used to create a time-varying broad beam. The proton imaging technique used exploits this time dependency by looking at the dose rate at the imager as a function of time. This dose rate function (DRF) has a unique time-varying dose pattern at each depth of penetration. A relatively slow rotation of the MW (0.2 revolutions per second) and a fast image acquisition (30 frames per second, ~33 ms sampling) provided a sufficient temporal resolution for each DRF. Along with the high output of the CsI:Tl scintillator, imaging with pixel binning (2  ×  2) generated high signal-to-noise data at a very low radiation dose (~0.1 cGy). Proton radiographs of a head phantom and a Gammex CT calibration phantom were taken with various configurations. The results of the phantom measurements show that the FPI can generate low noise and high spatial resolution proton radiographs. The WEPL values of the CT tissue surrogate inserts show that the measured relative stopping powers are accurate to ~2%. The panel did not show any noticeable radiation damage after the accumulative dose of approximately 3831 cGy. In summary, we have successfully demonstrated a highly practical method of generating proton radiography using an x-ray flat panel imager.


Journal of Applied Clinical Medical Physics | 2015

A comparison of the dose distributions from three proton treatment planning systems in the planning of meningioma patients with single-field uniform dose pencil beam scanning.

Paul J. Doolan; Jailan Alshaikhi; Ivan Rosenberg; C Ainsley; Adam Gibson; D D'Souza; E Bentefour; Gary J. Royle

With the number of new proton centers increasing rapidly, there is a need for an assessment of the available proton treatment planning systems (TPSs). This study compares the dose distributions of complex meningioma plans produced by three proton TPSs: Eclipse, Pinnacle3, and XiO. All three systems were commissioned with the same beam data and, as best as possible, matched configuration settings. Proton treatment plans for ten patients were produced on each system with a pencil beam scanning, single‐field uniform dose approach, using a fixed horizontal beamline. All 30 plans were subjected to identical dose constraints, both for the target coverage and organ at risk (OAR) sparing, with a consistent order of priority. Beam geometry, lateral field margins, and lateral spot resolutions were made consistent across all systems. Few statistically significant differences were found between the target coverage and OAR sparing of each system, with all optimizers managing to produce plans within clinical tolerances (D2<107% of prescribed dose, D5<105%, D95>95%, D99>90%, and OAR maximum doses) despite strict constraints and overlapping structures. PACS number: 87.55.D‐With the number of new proton centers increasing rapidly, there is a need for an assessment of the available proton treatment planning systems (TPSs). This study compares the dose distributions of complex meningioma plans produced by three proton TPSs: Eclipse, Pinnacle3 , and XiO. All three systems were commissioned with the same beam data and, as best as possible, matched configuration settings. Proton treatment plans for ten patients were produced on each system with a pencil beam scanning, single-field uniform dose approach, using a fixed horizontal beamline. All 30 plans were subjected to identical dose constraints, both for the target coverage and organ at risk (OAR) sparing, with a consistent order of priority. Beam geometry, lateral field margins, and lateral spot resolutions were made consistent across all systems. Few statistically significant differences were found between the target coverage and OAR sparing of each system, with all optimizers managing to produce plans within clinical tolerances (D2<107% of prescribed dose, D5<105%, D95>95%, D99>90%, and OAR maximum doses) despite strict constraints and overlapping structures. PACS number: 87.55.D.


radiation effects data workshop | 2010

The Use of Diodes as Dose and Fluence Probes in the Experimental Beamline at the Francis H. Burr Proton Therapy Center

E Cascio; E Bentefour

We describe the use of rectifier diodes to measure dose, fluence and mean proton energy inside a device under test. The fluence and energy measurements are performed by analyzing pulses induced by individual protons.


Medical Physics | 2010

TU‐A‐204B‐02: On the Potential of CBCT for Range Verification in Proton Therapy

E Bentefour; Shikui Tang; Stefan Both; G Chen; H Lu

Purpose: We have investigated the potential use of cone beam CT(CBCT) for beam range verifications in proton therapy treatment, in addition to its primary role in geometric targeting. Specifically, we studied the intrinsic imaging variability of a CBCT and its effect on the water equivalent path length (WEPL) calculations, in the context of daily beam range verification/correction required for a recently proposed method of treating prostate using anterior fields. The current approach uses only lateral fields due to the lack of precise range control in patient. Materials and Methods: An anthropomorphic pelvic phantom was scanned using CBCT, in eight sessions on eight different days. In each session, the phantom was scanned twice, first at a standard position as determined by the room lasers, and then with a random shift of one centimeter in lateral directions. The Xio treatment planning system was used to perform the analysis. The average Hounsfield unit (HU) numbers for the water column in the rectal balloon was used to perform a linear calibration of the stopping power ratio, independently for each scan, as supported by the planning system. A number of WEPL values vertically from the anterior skin surface to the anterior surface of the water balloon were calculated on slices covering the region of the prostate, in relevance to a prostate treatment using an anterior field. Results: The HU number in the water column varied significantly even within the same CBCT. The average value also varied from day to day for up to 20 units. However, when these average values are used to calibrate the stopping power ratio, the variations in WEPL values along the anterior beam path are mostly within 2 mm. Conclusions: In‐room CBCT can be used in proton therapy to make online verification of protons range in patients with 2mm accuracy.


Medical Physics | 2013

SU‐E‐T‐447: Methods and Device for Dose Based Proton Radiography

E Bentefour; D Samuel; M Testa; H Lu

PURPOSE We report on the development of high spatial resolution, large active area proton radiography device that uses the dose measurement method for WEPL determination for both passive scattering (DS) and Pencil Beam Scanning (PBS). METHODS We used on the shelf appropriately CMOS sensor with an active area of 27mm × 22mm and active pixel size of 21.7 μm2. The read out electronics can record images at 2000 fps over 1024 × 1024 pixels. This technology is combined with an on the shelf QA device that uses 900cm2 gadolinium based scintillator and geometric optical system that focus the image on a 45 degree mirror on the above CMOS sensor. When placed behind the patient, the assembled device measures the 2D exit dose distribution. For DS fields, the method utilizes the periodic time dependence of the dose. By measuring the time-dependence of dose at each pixel and comparing it against a library of time-dependence patterns for all depths in water, the radiological path length to the point of measurement can be determined with millimeter accuracy. For PBS fields, the method uses test beam that contains a few scanning layers in depth with properly spaced ranges. Each layer has a known dose profile in water phantom. The ratio between the measured doses from each layer provides the WEPL information through the patient. RESULTS The assembled device achieved high performances as proton radiography device. The WEPL of large objects, up to 900cm2, are imaged, using both passive and active beams, with 0.6mm2 spatial resolutions and mm accuracy. The dose needed to achieve such performance is less than 1cGy for both DS and PBS. CONCLUSION The assembled device proves to be a versatile proton imager. It has the potential for use as in-room tool for pre-treatment QA for patient WEPL verification.


Medical Physics | 2016

MO-FG-CAMPUS-JeP1-02: Proton Range Verification of Scanned Pencil Beams Using Prompt Gamma Imaging

Yunhe Xie; E Bentefour; Guillaume Janssens; J. Smeets; D Dolney; Lingshu Yin; L. Hotoiu; F Vander Stappen; S Avery; F O'Grady; D. Prieels; J McDonough; Timothy D. Solberg; Alexander Lin; Boon-Keng Kevin Teo

PURPOSE Prompt gammas are emitted along the proton beam path and have an emission profile correlated with the depth dose profile. In this study, the accuracy of in-vivo proton range verification using a 1-D prompt gamma camera is assessed. METHODS The 1-D camera is comprised of a tungsten slit collimator positioned in front of a linear array of LYSO scintillating crystals coupled to silicon photomultipliers. The imaged gamma profiles of individual pencil beam spots and energy layers were analyzed by determining the relative shifts from the expected gamma profiles based on analytic prediction or reference measurements. The range retrieval precision was evaluated by reproducibility measurements and by irradiation through a heterogeneous phantom composed of materials with known stopping power ratios. The camera was evaluated at clinical doses in pencil beam scanning mode on a head-and-neck phantom (HN). Two scenarios were studied: 5 mm systematic range error; and setup error of 10 mm transverse to the proton beam. RESULTS The camera range retrieval precision was 2 mm at clinical doses. For the heterogeneous phantom and HN phantom studies, the discrepancies between the analytic model and measurements were less than 2 mm for both spot and iso-energy layer analysis. For the simulated 5 mm range error, the retrieved shifts were 4.3±2.0 mm. For the 10 mm setup error, large shifts (> 4 mm) were observed for some spots due to differences in the irradiated and expected beam path from the measurements without setup error. CONCLUSION Our studies demonstrated that in-vivo proton range verification is feasible using a 1D prompt gamma camera with a 2 mm range retrieval precision. Pencil beam spot under or over ranging can be detected via comparison between measured and expected profiles.

Collaboration


Dive into the E Bentefour's collaboration.

Top Co-Authors

Avatar

H Lu

Harvard University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shikui Tang

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

D. Prieels

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guillaume Janssens

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Gary J. Royle

University College London

View shared research outputs
Researchain Logo
Decentralizing Knowledge