E. Bermingham
Smithsonian Tropical Research Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by E. Bermingham.
Molecular Phylogenetics and Evolution | 2002
Anabel Perdices; E. Bermingham; Antonia Montilla; Ignacio Doadrio
We constructed phylogenetic hypotheses for Mesoamerican Rhamdia, the only genus of primary freshwater fish represented by sympatric species across Central America. Phylogenetic relationships were inferred from analysis of 1990 base pairs (bp) of mitochondrial DNA (mtDNA), represented by the complete nucleotide sequences of the cytochrome b (cyt b) and the ATP synthase 8 and 6 (ATPase 8/6) genes. We sequenced 120 individuals from 53 drainages to provide a comprehensive geographic picture of Central American Rhamdia systematics and phylogeography. Phylogeographic analysis distinguished multiple Rhamdia mtDNA lineages, and the geographic congruence across evolutionarily independent Rhamdia clades indicated that vicariance has played a strong role in the Mesoamerican diversification of this genus. Phylogenetic analyses of species-level relationships provide strong support for the monophyly of a trans-Andean clade of three evolutionarily equivalent Rhamdia taxa: R. guatemalensis, R. laticauda, and R. cinerascens. Application of fish-based mitochondrial DNA clocks ticking at 1.3-1.5% sequence divergence per million years (Ma), suggests that the split between cis- and trans-Andean Rhamdia extends back about 8 Ma, and the three distinct trans-Andean Rhamdia clades split about 6 Ma ago. Thus the mtDNA divergence observed between cis- and trans-Andean Rhamdia species is too low to support an ancient colonization of Central America in the Late Cretaceous or Paleocene as had been hypothesized in one colonization model for Mesoamerican fishes. Rather the mtDNA data indicate that Rhamdia most likely colonized Central America in the late Miocene or Pliocene, promoting a strong role for the Isthmus of Panamá in the Mesoamerican expansion of this genus. Basal polytomies suggest that both the R. laticauda and R. guatemalensis clades spread rapidly across the Central American landscape, but differences in the average mtDNA genetic distances among clades comprising the two species, indicate that the R. laticauda spread and diversified across Mesoamerica about 1 million years before R. guatemalensis.
Molecular Phylogenetics and Evolution | 2004
Brice Quenouille; E. Bermingham; Serge Planes
Damselfishes in the family Pomacentridae represent one of the few families of reef fishes found on coral reefs irrespective of location. At a local scale, damselfishes are often the most abundant coral reef fish, and their study has provided much of our current understanding of the ecology of tropical reef animals. The study of phylogenetic relationships among the Pomacentridae has lagged ecological investigation of the group, thus limiting historical perspective on the remarkable species richness of the family. In this study, we used 1989bp of DNA sequence representing three mitochondrial genes and 1500bp of the single copy nuclear RAG1 region to infer hypotheses of relationship for the group. Our analysis includes 103 Pomacentridae species in 18 genera, and three of the four named subfamilies: Amphriprioninae, Chrominae, and Pomacentrinae. The Bayesian method of phylogenetic reconstruction was applied to the data, because even with a large number of sequences it is an efficient means of analysis that provides intuitive measures of support for tree topologies and for the parameters of the nucleotide substitution model. Four Pomacentridae clades were identified with high statistical support whether the data were analyzed from a mtDNA, RAG1 or combined perspective, and in all analyses the current subfamilial classification of the Pomacentridae was rejected. At the genus level, Amphiprion, Chromis, and Chrysiptera were also rejected as natural groups. Abudefduf, Amblyglyphidodon, Dascyllus, Neoglyphidodon, Neopomacentrus, and Pomacentrus were each strongly supported as monophyletic genera but the support for monophyly is nonetheless compromised by sample size, except in the case of Dascyllus and Abudefduf for which we have sampled almost all of the described species.
Molecular Ecology | 2002
S. Shawn McCafferty; E. Bermingham; Brice Quenouille; Serge Planes; G. Hoelzer; K. Asoh
The phylogeographical and systematic relationships among species in the tropical marine fish genus Dascyllus were inferred using mitochondrial DNA (mtDNA) sequence data. Although our results were generally consistent with previously published phylogenies based on both morphological and mitochondrial data, our broad taxonomic and geographical sampling design revealed novel insights into the phylogenetic history of Dascyllus that had escaped previous notice. These results include: (a) the polyphyletic nature of D. reticulatus mtDNAs, representing two divergent and geographically separated lineages, one shared with D. flavicaudus and the second forming the sister lineage of D. carneus; (b) the paraphyly of D. trimaculatus relative to the closely related D. abisella; and (c) phylogeographical structure within the widespread taxa D. aruanus and D. trimaculatus. Application of a molecular clock permits us to posit a causative role for tectonic and oceanic changes regarding some Dascyllus speciation events. Finally, we mapped body size and the presence or absence of protogynous sex change on the mtDNA tree, and tested published hypotheses regarding determinants of the evolution of mating system and protogyny in the genus. Our data rejected a model based on body size but not one based on phylogenetic inertia. The ability to change sex arose once in the ancestor to the entire genus, and was lost once in the ancestor of the D. trimaculatus complex. For taxa that are as geographically widespread as many Indo‐Pacific genera, this study highlights the importance of adequate geographical sampling when inferring patterns of species diversification and life history evolution.
Proceedings of the Royal Society of London B: Biological Sciences | 2004
Scott A. Smith; Graham Bell; E. Bermingham
Completion of the Panama Canal in 1914 breached the continental divide and set into motion a natural experiment of unprecedented magnitude by bringing previously isolated freshwater fish communities into contact. The construction of a freshwater corridor connecting evolutionarily isolated communities in Pacific and Caribbean watersheds dramatically increased the rate of dispersal, without directly affecting species interactions. Here, we report that a large fraction of species have been able to establish themselves on the other side of the continental divide, whereas no species have become extinct, leading to a local increase in species richness. Our results suggest that communities are not saturated and that competitive exclusion does not occur over the time–scale previously envisioned. Moreover, the results of this unintentional experiment demonstrate that community composition and species richness were regulated by the regional process of dispersal, rather than by local processes such as competition and predation.
Molecular Ecology | 2008
Oscar Puebla; E. Bermingham; Frédéric Guichard
Large‐scale, spatially explicit models of adaptive radiation suggest that the spatial genetic structure within a species sampled early in the evolutionary history of an adaptive radiation might be higher than the genetic differentiation between different species formed during the same radiation over all locations. Here we test this hypothesis with a spatial population genetic analysis of Hypoplectrus coral reef fishes (Serranidae), one of the few potential cases of a recent adaptive radiation documented in the marine realm. Microsatellite analyses of Hypoplectrus puella (barred hamlet) and Hypoplectrus nigricans (black hamlet) from Belize, Panama and Barbados validate the population genetic predictions at the regional scale for H. nigricans despite the potential for high levels of gene flow between populations resulting from the 3‐week planktonic larval phase of Hypoplectrus. The results are different for H. puella, which is characterized by significantly lower levels of spatial genetic structure than H. nigricans. An extensive field survey of Hypoplectrus population densities complemented by individual‐based simulations shows that the higher abundance and more continuous distribution of H. puella could account for the reduced spatial genetic structure within this species. The genetic and demographic data are also consistent with the hypothesis that H. puella might represent the ancestral form of the Hypoplectrus radiation, and that H. nigricans might have evolved repeatedly from H. puella through ecological speciation. Altogether, spatial genetic analysis within and between Hypoplectrus species indicate that local processes can operate at a regional scale within recent marine adaptive radiations.
Ecology | 2009
Oscar Puebla; E. Bermingham; Frédéric Guichard
The spatial scale of dispersal in coral reef fishes eludes ecologists despite the importance of this parameter for understanding the dynamics of ecological and evolutionary processes. Genetic isolation by distance (IBD) has been used to estimate dispersal in coral reef fishes, but its application in marine systems has been limited by insufficient sampling at different spatial scales and a lack of information regarding population density. Here, we present an analysis of IBD in the barred hamlet (Hypoplectrus puella, Serranidae) at spatial scales ranging from 10 to 3200 km complemented with SCUBA surveys of population densities covering 94000 m2 of reef. We used 10 hypervariable DNA markers to genotype 854 fish from 15 locations, and our results establish that IBD in H. puella emerges at a spatial scale of 175 km and is preserved up to the regional scale (3200 km). Assuming a normal or a Laplace dispersal function, our data are consistent with mean dispersal distances in H. puella that range between 2 and 14 km. Such small mean dispersal distances is a surprising result given the three-week pelagic larval duration of H. puella and the low level of genetic structure at the Caribbean scale (Wrights fixation index, F(ST), estimate = 0.005). Our data reinforce the importance of considering population density when estimating dispersal from IBD and underscore the relevance of sampling at local scales, even when genetic structure is weak at the regional scale.
Evolution | 2016
Sophie Picq; Fernando Alda; E. Bermingham; Rüdiger Krahe
Communication signals are highly diverse traits. This diversity is usually assumed to be shaped by selective forces, whereas the null hypothesis of divergence through drift is often not considered. In Panama, the weakly electric fish Brachyhypopomus occidentalis is widely distributed in multiple independent drainage systems, which provide a natural evolutionary laboratory for the study of genetic and signal divergence in separate populations. We quantified geographic variation in the electric signals of 109 fish from five populations, and compared it to the neutral genetic variation estimated from cytochrome oxidase I (COI) sequences of the same individuals, to test whether drift may be driving divergence of their signals. Signal distances were highly correlated with genetic distances, even after controlling for geographic distances, suggesting that drift alone is sufficient to explain geographic variation in electric signals. Significant differences at smaller geographic scales (within drainages) showed, however, that electric signals may evolve at a faster rate than expected under drift, raising the possibility that additional adaptive forces may be contributing to their evolution. Overall, our data point to stochastic forces as main drivers of signal evolution in this species and extend the role of drift in the evolution of communication systems to fish and electrocommunication.
Science | 2001
Robert E. Ricklefs; E. Bermingham
Journal of Biogeography | 2005
Scott A. Smith; E. Bermingham
Tropical rainforests: past, present and future. | 2005
E. Bermingham; Christopher W. Dick; Craig Moritz