E. Canale-Parola
University of Massachusetts Amherst
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by E. Canale-Parola.
Archives of Microbiology | 1980
T. B. Stanton; E. Canale-Parola
A saccharolytic spirochete that associated and interacted with cellulolytic bacteria was isolated from bovine rumen fluid. Isolation was accomplished by means of a procedure involving serial dilution of a sample of rumen fluid into a cellulose-containing agar medium. Clear zones appeared within the medium as a result of cellulose hydrolysis by rumen bacteria. The saccharolytic spirochete and a cellulolytic bacterium later identified as a strain of Bacteroides succinogenes were isolated from the clear zones. The spirochete did not utilize cellulose, but grew in coculture with the cellulolytic bacterium in cellulose-containing media. When cocultured in these media the spirochete used, as fermentable substrates, soluble sugars released from cellulose by the cellulolytic bacterium. In cellulosecontaining agar medium the spirochete enhanced cellulose breakdown by the B. succinogenes strain. Electron microscopy showed that the helical spirochete cells possessed an outer sheath, a protoplasmic cylinder, and two periplasmic fibrils. Under a CO2 atmosphere, in a reduced medium containing inorganic salts, rumen fluid, glucose, and NaHCO3, the spirochete grew to a final density of 1.9×109 cells/ml. Succinate, acetate, and formate were products of the fermentation of glucose by growing cells. CO2 (HCO3-), branched short-chain fatty acids, folic acid, biotin, niacinamide, thiamine, pyridoxal, and a carbohydrate were required for growth of the spirochete. The results of this study indicated that the rumen spirochete represents a new species of Treponema. It is proposed that the new species be named Treponema bryantii.
Archives of Microbiology | 1970
Robert B. Hespell; E. Canale-Parola
SummaryA strictly anaerobic spirochete was isolated from a sample of marine mud. The organism possessed two axial fibrils entwined with the regularly coiled protoplasmic cylinder. An outer envelope or sheath enclosed both protoplasmic cylinder and axial fibrils. The spirochete grew in chemically defined media containing glucose, amino acids or NH4Cl, sulfide, NaCl, vitamins, coenzyme A, and in-organic salts. A reducing agent, such as sodium sulfide or l-cysteine, as well as exogenous supplements of biotin, niacin and coenzyme A were required for growth. Pantothenate replaced coenzyme A as an exogenous growth factor, but the resulting cell yields were low. The spirochete grew in media prepared with sea water, but not in fresh water media containing less than 0.05 M NaCl (optimum concentration 0.35 M). Both Na+ and Cl- were required. Carbohydrates served as fermentable substrates. Amino acids, sugar alcohols, tricarboxylic acid cycle intermediates, and other organic acids and alcohols were not fermented. Glucose was fermented to ethyl alcohol, acetate, CO2, H2, and small amounts of lactate, formate and pyruvate. The guanine + cytosine content of the DNA of the spirochete was 50.5 moles-% (buoyant density). It is proposed that the marine isolate be considered a new species and that it be named Spirochaeta litoralis.
Archives of Microbiology | 1994
Mechthild Pohlschroeder; Susan B. Leschine; E. Canale-Parola
Two strains of obligately anaerobic, thermophilic spirochetes were isolated from cyanobacterial mat samples collected at freshwater hot springs in Oregon and Utah, USA. The isolates grew optimally between 48° and 52°C, and did not grow at 25° or 60°C. Both strains fermented various pentoses, hexoses, and disaccharides. Amino acids or cellulose did not serve as fermentable substrates for growth. H2, CO2, acetate, and lactate were end products of d-glucose fermentation. On the basis of physiological characteristics, guanine + cytosine content of DNA, and comparisons of 16S ribosomal RNA sequences, it was concluded that the two isolates were representatives of a novel species of Spirochaeta for which the name Spirochaeta caldaria is proposed. One of the two strains was grown in coculture with a thermophilic cellulolytic bacterium (Clostridium thermocellum) in a medium containing cellulose as the only fermentable substrate. In the coculture cellulose was broken down at a faster rate than in the clostridial monoculture. The results are consistent with the suggestion that interactions between cellulolytic bacteria and non-cellulolytic spirochetes enhance cellulose breakdown in natural environments in which cellulose-containing plant material is biodegraded.
Archives of Microbiology | 1976
E. P. Greenberg; E. Canale-Parola
A facultatively anaerobic spirochete isolated from a high-salinity pond grew optimally when 0.75 M NaCl, 0.2 M MgSO4, and 0.01 M CaCl2 were present in media containing yeast extract, peptone, and a carbohydrate. The organism failed to grow when any one of these three salts was omitted from the medium. Aerobically-grown colonies of the spirochete were red, whereas anaerobically-grown colonies showed no pigmentation. Non-pigmented mutants of the spirochete were isolated.The spirochete used carbohydrates, but not amino acids, as energy sources. Glucose was fermented to CO2, H2, ethanol, acetate, and a small amount of lactate. Determinations of radioactivity in products formed from glucose-1-14C and enzymatic assays indicated that glucose was dissimilated to pyruvate mainly via the Embden-Meyerhof pathway. Pyruvate was metabolized through a clostridial-type clastic reaction.Cells growing acrobically performed an incomplete oxidation of glucose mainly to CO2 and acetate. Comparison of aerobic and anaerobic growth yields indicated that oxidative phosphorylation occurred in cells growing aerobically. The guanine + cytosine content of the DNA of the spirochete was 62 moles%. It is proposed that the spirochete described herein be considered a new species and that it be namedSpirochaeta halophila.
International Journal of Systematic and Evolutionary Microbiology | 2001
Esteban Monserrate; Susan B. Leschine; E. Canale-Parola
Two strains of obligately anaerobic, mesophilic, cellulolytic, N2-fixing, spore-forming bacteria were isolated from soil samples collected at two different locations near Amherst, MA, USA. Single cells of both strains were slightly curved rods that measured between 2 and 6 microm in length and approximately 0.5 microm in diameter. The spores were spherical, terminally located, distended the sporangium and measured 0.8-1.0 microm in diameter. The cells of both isolates (designated strain ADT and strain B3B) stained Gram-negative, but did not have a typical Gram-negative cell wall structure as demonstrated by transmission electron microscope analysis. The cells of both strains were motile with subpolarly inserted flagella and exhibited chemotactic behaviour towards cellobiose and D-glucose. Both strains fermented cellulose, xylan, cellobiose, cellodextrins, D-glucose, D-xylose, D-fructose, D-mannose and gentiobiose. In addition, strain B3B fermented L-arabinose. For both strains, fermentation products from cellulose were acetate, ethanol, H2 and CO2, as well as small amounts of lactate and formate. The G+C content of strain AD was 40 mol% and that of strain B3B was 42 mol%. Based on their morphological, physiological and phylogenetic characteristics, it was concluded that the two isolates are representatives of a novel species of Clostridium. The name Clostridium hungatei is proposed for the new species. The type strain of Clostridium hungatei sp. nov. is strain ADT (= ATCC 700212T).
Archives of Microbiology | 1979
W. M. Cwyk; E. Canale-Parola
The morphology, the general physiological characteristics, and the energy-yielding metabolism of an obligately anaerobic spirochete isolated from the colon of a swine were studied. Electron microscopy showed that the helical spirochetal cells possessed an outer sheath, a protoplasmic cylinder, and 4 periplasmic fibrils in a 2-4-2 arrangement. The spirochete grew in an atmosphere of N2 in prereduced media containing a carbohydrate, NaHCO3, rumen fluid, yeast extract, peptone, l-cysteine, and inorganic salts. The spirochete fermented carbohydrates and required substrate amounts of CO2 (HCO3-) for growth. Amino acids were not fermented. Major fermentation products of cells growing with glucose as the substrate and in the presence of CO2 were acetate, formate, succinate, and lactate. Small amounts of 2,3-butanediol, pyruvate, and acetoin were also formed. Determinations of enzymatic activities in cell extracts, and of radioactivity in products formed by growing cells from [1-14C]glucose, indicated that this sugar was dissimilated to pyruvate via the Embden-Meyerhof pathway. The spirochetes used a coliform-type clastic reaction to metabolize pyruvate. Determinations of radioactivity in products formed from [14C]NaHCO3 indicated that CO2 was assimilated and used in succinate production. The guanine+cytosine content of the DNA was 36 mol%. This study indicates that this intestinal spirochete represents a new species of Treponema. It is proposed that the new species be named Treponema succinifaciens.
Archives of Microbiology | 1968
E. Canale-Parola; Zigrida Udris; M. Mandel
SummaryThe natural relationships among free-living and host-associated spirochetes were studied by investigating aspects of their morphology, physiology and DNA base composition. These studies indicated that the strictly and facultatively anaerobic, free-living spirochetes share characteristics which distinguish them from their host-associated counterparts and from the free-living leptospires.It is suggested that the strictly and facultatively anaerobic, free-living spirochetes be grouped in the genus Spirochaeta and that this genus include the following four species: S. plicatilis (type species), S. stenostrepta, S. zwelzerae (Treponema zuelzerae), and S. aurantia. The characteristics of these species are described.
Archives of Microbiology | 1971
Robert B. Hespell; E. Canale-Parola
SummaryTreponema denticola was grown in serum-containing media to which 14C-labelled compounds were added. Determinations of radioactivity in the products formed indicated that the organism fermented alanine, cysteine, glycine, serine, and glucose. Fermentation products included acetate, lactate, succinate, formate, pyruvate, ethanol, CO2, H2S, and NH3. The products formed from glucose constituted a small portion of the total products. Assays of enzymatic activities in cell extracts indicated that the organism degraded glucose via the Embden-Meyerhof pathway. T. denticola possessed a coenzyme A-dependent CO2-pyruvate exchange activity associated with a clostridial-type clastic system for pyruvate metabolism. Phosphotransacetylase and acetate kinase activities were present in cell extracts. Acetyl phosphate formation and benzyl viologen reduction were detected when cell extracts were incubated with pyruvate, serine or cysteine. The data indicate that T. denticola is an amino acid fermenter and that it possesses the enzymes needed for the fermentation of glucose. However, glucose does not serve as the primary substrate when the organism grows in media including both this carbohydrate and amino acids.
Archives of Microbiology | 1972
R. Joseph; E. Canale-Parola
Summary1.Axial fibrils isolated from three species of Spirochaeta were examined by electron microscopy. Each axial fibril consisted of three main morphological components similar to those present in bacterial flagella: an insertion apparatus, a proximal hook near the insertion apparatus, and a filamentous portion. The filamentous portion appeared to be composed of a core surrounded by a non-striated sheath. The core consisted of globules arranged in a helical pattern. Striated tubular structures were observed in preparations of disrupted cells.2.Purified axial fibril cores were dissociated by acid, alkali, urea, or guanidine-HCl, but were stable to the action of various enzymes. The proximal hooks were more resistant than the fibril cores to treatment with acid, alkali, or other chemicals. Aspartic and glutamic acids, alanine, leucine, glycine, and serine were the most abundant amino acids in axial fibril core hydrolysates. At pH 2.4 in 4 M urea, acid-dissociated axial fibril cores yielded two protein bands in polyacrylamide gel electrophoresis. Structures morphologically closely resembling the native axial fibril cores were assembled in vitro by raising the pH of acid-dissociated fibril core preparations. The data show that striking similarities exist between spirochetal axial fibrils and bacterial flagella with regard to their fine structure and physical and chemical characteristics. The results support the view that axial fibrils play a role in spirochetal motility.3.Spirochetes from which the axial fibrils had been removed by treatment with acid maintained their coiled shape. The peptidoglycan layer purified from two species of Spirochaeta frequently retained its coiled configuration. It is concluded that, in the spirochetes studied, the axial fibrils are not responsible for maintaining the coiled shape of the cells, but that this function is served by the peptidoglycan.
Archives of Microbiology | 1967
E. Canale-Parola; Stanley C. Holt; Zigrida Udris
SummaryThis paper reports observations on the physiology and morphology of three strains of anaerobic spirochetes isolated from mud by a selective procedure involving differential filtration of the inoculum.