Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where E. Capobianco is active.

Publication


Featured researches published by E. Capobianco.


Free Radical Research | 2005

Oxidative stress promotes the increase of matrix metalloproteinases-2 and -9 activities in the feto-placental unit of diabetic rats

María Carolina Pustovrh; A. Jawerbaum; E. Capobianco; Verónica White; Nora Martinez; Juan José López-Costa; E.T. Gonzalez

Maternal diabetes increases the risk of congenital malformations, placental dysfunction and diseases in both the neonate and the offsprings later life. Oxidative stress has been involved in the etiology of these abnormalities. Matrix metalloproteases (MMPs), involved in multiple developmental pathways, are increased in the fetus and placenta from diabetic experimental models. As oxidants could be involved in the activation of latent MMPs, we investigated a putative relationship between MMPs activities and oxidative stress in the feto-placental unit of diabetic rats at midgestation. We found that H2O2 enhanced and that superoxide dismutase (SOD) reduced MMPs activities in the maternal side of the placenta and in the fetuses from control and diabetic rats. MMPs were not modified by oxidative status in the fetal side of the placenta. Lipid peroxidation was enhanced in the maternal and fetal sides of the placenta and in the fetus from diabetic rats when compared to controls, and gradually decreased from the maternal placental side to the fetus in diabetic animals. The activities of the antioxidant enzymes SOD and catalase were decreased in the maternal placental side, catalase activity was enhanced in the fetal placental side and both enzymes were increased in the fetuses from diabetic rats when compared to controls. Our data demonstrate changes in the oxidative balance and capability of oxidants to upregulate MMPs activity in the feto-placental unit from diabetic rats, a basis to elucidate links between oxidative stress and alterations in the developmental pathways in which MMPs are involved.


Reproduction, Fertility and Development | 2005

15-Deoxy-Δ12,14-prostaglandin J2 and peroxisome proliferator-activated receptor γ (PPARγ) levels in term placental tissues from control and diabetic rats: modulatory effects of a PPARγ agonist on nitridergic and lipid placental metabolism

E. Capobianco; A. Jawerbaum; Mc Romanini; Verónica White; Carolina Pustovrh; R. Higa; Nora Martinez; M. T. Mugnaini; C. Soñez; E Gonzalez

15-Deoxy-Δ12,14-prostaglandin J2 (15dPGJ2) is a peroxisome proliferator-activated receptor γ (PPARγ) ligand that regulates lipid homeostasis and has anti-inflammatory properties in many cell types. We postulated that 15dPGJ2 may regulate lipid homeostasis and nitric oxide (NO) levels in term placental tissues and that alterations in these pathways may be involved in diabetes-induced placental derangements. In the present study, we observed that, in term placental tissues from streptozotocin-induced diabetic rats, 15dPGJ2 concentrations were decreased (83%) and immunostaining for nitrotyrosine, indicating peroxynitrite-induced damage, was increased. In the presence of 15dPGJ2, concentrations of nitrates/nitrites (an index of NO production) were diminished (40%) in both control and diabetic rats, an effect that seems to be both dependent on and independent of PPARγ activation. Exogenous 15dPGJ2 did not modify lipid mass, but decreased the incorporation of 14C-acetate into triacylglycerol (35%), cholesteryl ester (55%) and phospholipid (32%) in placenta from control rats, an effect that appears to be dependent on PPARγ activation. In contrast, the addition of 15dPGJ2 did not alter de novo lipid synthesis in diabetic rat placenta, which showed decreased levels of PPARγ. We conclude that 15dPGJ2 modulates placental lipid metabolism and NO production. The concentration and function of 15dPGJ2 and concentrations of PPARγ were altered in placentas from diabetic rats, anomalies probably involved in diabetes-induced placental dysfunction.


Reproduction | 2008

Peroxisome proliferator-activated receptor α activation regulates lipid metabolism in the feto-placental unit from diabetic rats

Nora Martinez; E. Capobianco; Verónica White; María Carolina Pustovrh; Romina Higa; Alicia Jawerbaum

Maternal diabetes promotes an overaccumulation of lipids in the feto-placental unit and impairs feto-placental development and growth. Here, we investigated the role played by the nuclear receptor peroxisome proliferator-activated receptor (PPAR)alpha in lipid metabolism in fetuses and placentas from control and neonatal streptozotocin-induced diabetic rats. Placentas and fetuses were studied on day 13.5 of gestation. The concentrations of PPARalpha (by Western blot) and its endogenous agonist leukotriene B(4) (LTB(4)) (by enzyme immunoassay) were analysed. Placental explants and fetuses were cultured with LTB(4) or clofibrate, and then lipid metabolism analysed (concentrations and synthesis from (14)C-acetate of triglycerides, phospholipids, cholesterol and cholesteryl esters; release of glycerol and free fatty acids (FFAs)). We found that maternal diabetes led to increases in placental concentrations of triglycerides and cholesteryl esters, and fetal concentrations of phospholipids. PPARalpha agonists downregulated fetal and placental lipid concentrations in control and diabetic rats. The synthesis of lipids was reduced in the diabetic placenta but increased in fetuses from diabetic animals. PPARalpha agonists reduced the synthesis of lipids in control placenta and in the fetuses from control and diabetic rats. Glycerol and FFA release was enhanced in the diabetic placenta and in control placenta cultured with PPARalpha agonists. Maternal diabetes led to reductions in fetal and placental LTB(4) concentrations and to increases in placental PPARalpha concentrations. Overall, these data support a novel role of PPARalpha as a regulator of lipid metabolism in the feto-placental unit, relevant in maternal diabetes where fetal and placental PPARalpha, LTB(4) and lipid concentrations are altered.


Journal of Molecular Endocrinology | 2011

PPARα agonists regulate lipid metabolism and nitric oxide production and prevent placental overgrowth in term placentas from diabetic rats

Nora Martinez; Melisa Lidia Amelia Kurtz; E. Capobianco; Romina Higa; Verónica White; Alicia Jawerbaum

Maternal diabetes impairs fetoplacental metabolism and growth. Peroxisome proliferator-activated receptor α (PPARα) is a nuclear receptor capable of regulating lipid metabolism and inflammatory pathways. In this study, we analyzed whether placental and fetal PPARα activation regulates lipid metabolism and nitric oxide (NO) production in term placentas from diabetic rats. Diabetes was induced by neonatal streptozotocin administration. On day 21 of pregnancy, placentas from control and diabetic rats were cultured in the presence of PPARα agonists (clofibrate and leukotriene B(4) (LTB(4))) for further evaluation of levels, synthesis, and peroxidation of lipids as well as NO production. Besides, on days 19, 20, and 21 of gestation, fetuses were injected with LTB(4), and the placentas were explanted on day 21 of gestation for evaluation of placental weight and concentrations of placental lipids, lipoperoxides, and NO metabolites. We found that placentas from diabetic rats showed reduced PPARα concentrations. They presented no lipid overaccumulation but reduced lipid synthesis, parameters negatively regulated by PPARα activators. Lipid peroxidation and NO production, increased in placentas from diabetic rats, were negatively regulated by PPARα activators. Fetal PPARα activation in diabetic rats does not change placental lipid concentrations but reduced placental weight and NO production. In conclusion, PPARα activators regulate lipid metabolism and NO production in term placentas from diabetic rats, an activation that regulates placental growth and can partly be exerted by the developing fetus.


Reproduction | 2007

The role of nitric oxide on matrix metalloproteinase 2 (MMP2) and MMP9 in placenta and fetus from diabetic rats

María Carolina Pustovrh; Alicia Jawerbaum; Verónica White; E. Capobianco; Romina Higa; Nora Martinez; J J López-Costa; E González

Matrix metalloproteinases (MMPs) play an important role in tissue remodeling that accompanies the rapid growth, differentiation, and structural changes of the placenta and several fetal organs. In the present study, we investigated whether the diabetic maternal environment may alter the regulatory homeostasis exerted by nitric oxide (NO) on MMPs activity in the feto-placental unit from rats at midgestation. We found that NADPH-diaphorase activity, which reflects the distribution and activity of NO synthases (NOS), was increased in both placenta and fetuses from diabetic rats when compared with controls. In addition, while a NO donor enhanced MMP2 and MMP9 activities, a NOS inhibitor reduced these activities in the maternal side of the placenta from control rats. This regulatory effect of NO was only observed on MMP9 in the diabetic group. On the other hand, the NO donor did not modify MMP2 and MMP9 activities, while the NOS inhibitor reduced MMP9 activity in the fetal side of both control and diabetic placentas. In the fetuses, MMP2 was enhanced by the NO donor and reduced by the NO inhibitor in both fetuses from control and diabetic rats. Overall, this study demonstrates that NO is able to modulate the activation of MMPs in the feto-placental unit, and provides supportive evidence that increased NOS activity leads to NO overproduction in the feto-placental unit from diabetic rats, an alteration closely related to the observed MMPs dysregulation that may have profound implications in the formation and function of the placenta and the fetal organs.


Reproduction, Fertility and Development | 2004

Modulatory effect of leptin on nitric oxide production and lipid metabolism in term placental tissues from control and streptozotocin-induced diabetic rats.

White; E Gonzalez; E. Capobianco; Carolina Pustovrh; C. Soñez; Mc Romanini; A. Jawerbaum

Leptin production by placental tissues contributes to its circulating levels and functions. The diabetic pathology induces alterations in leptin levels. In the present study, leptin levels were evaluated in placental tissue from control and neonatal streptozotocin-induced (n-STZ) diabetic rats during late gestation. The effects of leptin levels on the generation of nitric oxide (NO), prostaglandin (PG) E(2) production and lipid metabolism were examined. Leptin levels were diminished in placentas from n-STZ diabetic rats compared with controls (P < 0.01). These differences were also evident when leptin was evaluated immunohistochemically. Addition of leptin (1 nM) in vitro enhanced NO production in control (66%) and diabetic placentas (134%) by stimulating NO synthase activity (by 38% and 54%, respectively). The addition of leptin increased PGE(2) production in placentas from control (173%) and diabetic rats (83%) and produced a 50% decrease in placental lipid levels (phospholipids, triacylglycerides, cholesterol and cholesteryl ester) without involving a reduction in de novo lipid synthesis. These data indicate that leptin enhances the production of placental NO and PGE(2), vasoactive agents that modify placental blood flow, and that leptin stimulates placental lipid metabolism, probably generating more lipids for transfer to the fetus. In the diabetic rat, placental leptin was reduced, probably as a response to the maternal environment to locally regulate the transfer of nutrients to the developing fetus.


Prostaglandins Leukotrienes and Essential Fatty Acids | 2003

Elevated levels of endothelin-1 and prostaglandin E2 and their effect on nitric oxide generation in placental tissue from neonatal streptozotocin-induced diabetic rats

E. Capobianco; A. Jawerbaum; Verónica White; Carolina Pustovrh; Débora Sinner; E Gonzalez

Endothelin-1 (ET-1), nitric oxide (NO) and prostaglandin E(2) (PGE(2)) are regulators of feto-placental hemodynamics. In this study we explore the inter-regulatory pathways that modulate the levels of these vasoactive agents in control and neonatal streptozotocin-induced (n-stz) diabetic rat placenta. ET-1 levels are increased in diabetic placenta when compared to controls (P<0.001), and are strongly reduced by an NO synthase inhibitor (P<0.001). PGE(2) production is increased in diabetic placenta when compared to controls (P<0.01), but these levels are not modulated by ET-1. NO levels, similar in control and in diabetic placenta, are not influenced by PGE(2), but they are negatively modulated by ET-1 in both control (P<0.05) and diabetic (P<0.01) placenta. We conclude that rat placental ET-1 inhibits NO levels but does not modify PGE(2) concentrations. The elevated levels of ET-1 and PGE(2) in diabetic placenta, potent vasoconstrictors of placental vasculature, are probably related to the induction of placental insufficiency and fetal hypoxia in this pathology.


Reproduction | 2005

Peroxynitrites and impaired modulation of nitric oxide concentrations in embryos from diabetic rats during early organogenesis

Alicia Jawerbaum; Romina Higa; Verónica White; E. Capobianco; C Pustovrh; D Sinner; Nora Martinez; E González


Placenta | 2005

Increased matrix metalloproteinases 2 and 9 in placenta of diabetic rats at midgestation.

María Carolina Pustovrh; A. Jawerbaum; E. Capobianco; Verónica White; Juan José López-Costa; E Gonzalez


Nitric Oxide | 2002

Streptozotocin-Pancreatic Damage in the Rat: Modulatory Effect of 15-Deoxy Delta12,14-Prostaglandin J2 on Nitridergic and Prostanoid Pathway

E.T. Gonzalez; A. Jawerbaum; Débora Sinner; Carolina Pustovrh; Verónica White; E. Capobianco; Carme Xaus; Carmen Peralta; Joan Roselló-Catafau

Collaboration


Dive into the E. Capobianco's collaboration.

Top Co-Authors

Avatar

Verónica White

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar

A. Jawerbaum

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar

Alicia Jawerbaum

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar

Nora Martinez

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar

Carolina Pustovrh

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Romina Higa

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar

E Gonzalez

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar

E.T. Gonzalez

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar

Débora Sinner

National Scientific and Technical Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge