Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where E. Cappellaro is active.

Publication


Featured researches published by E. Cappellaro.


Astronomy and Astrophysics | 2005

The supernova rate per unit mass

F. Mannucci; M. Della Valle; Nino Panagia; E. Cappellaro; G. Cresci; R. Maiolino; A. R. Petrosian; Massimo Turatto

We compute the rate of supernovae (SNe) of different types along the Hubble sequence normalized to the near- infrared luminosity and to the stellar mass of the parent galaxies. This is made possible by the new complete catalog of near- infrared galaxy magnitudes obtained by 2MASS. We find that the rates of all SN types, including Ia, Ib/c and II, show a sharp dependence on both the morphology and the (B − K) colors of the parent galaxies and, therefore, on the star formation activity. In particular we find, with a high statistical significance, that the type Ia rate in late type galaxies is a factor ∼20 higher than in E/S0. Similarly, the type Ia rate in the galaxies bluer than B − K = 2.6 is about a factor of 30 larger than in galaxies with B − K > 4.1. These findings can be explained by assuming that a significant fraction of Ia events in late spirals/irregulars originates in a relatively young stellar component.


Nature | 1998

A 'hypernova' model for the supernova associated with the gamma-ray burst of 25 April 1998

Koichi Iwamoto; Paolo A. Mazzali; K. Nomoto; Hideyuki Umeda; Takashi Nakamura; Ferdinando Patat; I. J. Danziger; T. R. Young; T. Suzuki; T. Shigeyama; T. Augusteijn; V. Doublier; J.-F. Gonzalez; H. Boehnhardt; J. Brewer; Olivier R. Hainaut; C. Lidman; Bruno Leibundgut; E. Cappellaro; Massimo Turatto; Titus J. Galama; Paul M. Vreeswijk; C. Kouveliotou; J. van Paradijs; E. Pian; E. Palazzi; F. Frontera

The discovery of the unusual supernova SN1998bw, and its possible association with the γ-ray burst GRB 980425, provide new insights into the explosion mechanism of very massive stars and the origin of some classes of γ-ray bursts. Optical spectra indicate that SN1998bw is a type Ic supernova,, but its peak luminosity is unusually high compared with typical type Ic supernovae. Here we report our findings that the optical spectra and the light curve of SN1998bw can be well reproduced by an extremely energetic explosion of a massive star composed mainly of carbon and oxygen (having lost its hydrogen and helium envelopes). The kinetic energy of the ejecta is as large as +(2–5)× 1052 erg, more than ten times that of previously observed supernovae. This type of supernova could therefore be termed ‘hypernova’. The extremely large energy suggests the existence of a new mechanism of massive star explosion that can also produce the relativistic shocks necessary to generate the observed γ-rays.


The Astrophysical Journal | 2005

The Diversity of Type Ia Supernovae: Evidence for Systematics?

Stefano Benetti; E. Cappellaro; Paolo A. Mazzali; Massimo Turatto; G. Altavilla; F. Bufano; N. Elias-Rosa; R. Kotak; Giuliano Pignata; Maria Elena Salvo; V. Stanishev

The photometric and spectroscopic properties of 26 well-observed Type Ia Supernovae (SNe Ia) were analyzed with the aim of exploring SN Ia diversity. The sample includes (Branch) normal SNe, as well as extreme events such as SN 1991Tand SN 1991bg, while the truly peculiar SNe Ia, SN 2000cx and SN 2002cx, are not included in our sample. A statistical treatment reveals the existence of three different groups. The first group (FAINT) consists offaint SNe Ia similar to SN 1991bg, with low expansion velocities and rapid evolution of Si ii velocity. A second groupconsists of normal SNe Ia, also with high temporalvelocity gradient (HVG),butwithbrighter mean absolute magnitude hMB i¼� 19:3 and higher expansion velocities than the FAINT SNe. The third group includes both normal and SN 1991T-like SNe Ia: these SNe populate a narrow strip in the Siiivelocity evolution plot, with a lowvelocity gradient (LVG), but have absolute magnitudes similar to HVGs. While the FAINT and HVG SNe Ia togetherseemtodefinearelationbetweenR(Siii)andm15(B),theLVGSNeeitherdonotconformtothatrelation or define a new, looser one. The R(Siii) premaximum evolution of HVGs is strikingly different from that of LVGs. We discuss the impact of this evidence on the understanding of SN Ia diversity, in terms of explosion mechanisms, degree of ejecta mixing, and ejecta‐circumstellar material interaction. Subject heading g: supernovae: general


The Astrophysical Journal | 2001

The Metamorphosis of SN 1998bw

Ferdinando Patat; E. Cappellaro; J. Danziger; Paolo A. Mazzali; Jesper Sollerman; T. Augusteijn; James Brewer; V. Doublier; J.-F. Gonzalez; Olivier R. Hainaut; C. Lidman; Bruno Leibundgut; K. Nomoto; Takayoshi Nakamura; Jason Spyromilio; Luca Rizzi; Massimo Turatto; Jeremy R. Walsh; Titus J. Galama; Jan van Paradijs; C. Kouveliotou; Paul M. Vreeswijk; Filippo Frontera; Nicola Masetti; Eliana Palazzi; E. Pian

We present and discuss the photometric and spectroscopic evolution of the peculiar SN 1998bw, associated with GRB 980425, through an analysis of optical and near-IR data collected at ESOLa Silla. The spectroscopic data, spanning the period from day ( 9t o day)376 (relative to B maximum), have shown that this supernova (SN) was unprecedented, although somewhat similar to SN 1997ef. Maximum expansion velocities as high as 3 ) 104 km s~1 to some extent mask its resemblance to other Type Ic SNe. At intermediate phases, between photospheric and fully nebular, the expansion velocities (D104 km s~1) remained exceptionally high compared to those of other recorded core-collapse SNe at a similar phase. The mild linear polarization detected at early epochs suggests the presence of asymmetry in the emitting material. The degree of asymmetry, however, cannot be decoded from these measurements alone. The He I 1.083 and 2.058 km lines are identi—ed, and He is suggested to lie in an outer region of the envelope. The temporal behavior of the —uxes and pro—les of emission lines of Mg I) j4571, (O I) jj6300, 6364, and a feature ascribed to Fe are traced to stimulate future modeling work. The uniqueness of SN 1998bw became less obvious once it entered the fully nebular phase (after 1 yr), when it was very similar to other Type Ib/cIIb objects, such as the Type Ib SN 1996N and the Type IIb SN 1993J, even though SN 1998bw was 1.4 mag brighter than SN 1993J and 3 mag brighter than SN 1996N at a com- parable phase. The late-phase optical photometry, which extends up to 403 days after B maximum, shows that the SN luminosity declined exponentially but substantially faster than the decay rate of 56Co. The ultraviolet-optical-infrared bolometric light curve, constructed using all available optical data and the early JHK photometry presented in this work, shows a slight —attening starting on about day )300. Since no clear evidence of ejecta-wind interaction was found in the late-time spectroscopy (see also the work of Sollerman and coworkers), this may be due to the contribution of the positrons since most c-rays escape thermalization at this phase. A contribution from the superposed H II region cannot, however, be excluded. Subject headings: gamma rays: burstssupernovae: generalsupernovae: individual (SN 1998bw)


Proceedings of SPIE | 2004

OmegaCAM: wide-field imaging with fine spatial resolution

K. Kuijken; Ralf Bender; E. Cappellaro; Bernard Muschielok; Andrea Baruffolo; E. Cascone; Hans-Joachim Hess; Olaf Iwert; H. Nicklas; Klaus Reif; E Valentijn; Dietrich Baade; Kornelis Begeman; Alessandro Bortolussi; Danny Boxhoorn; Fabrice Christen; E. Deul; Laura Greggio; Reiner Harke; Reinhold Haefner; Ulrich Hopp; Ivica Ilijevski; Guenther Klink; Helmut Kravcar; Carlo E. Magagna; Wolfgang Mitsch; P. K. Mueller; Henning Poschmann; Roeland Rengelink; Walter Wellem

OmegaCAM is the wide-field camera for the VLT Survey Telescope being completed for ESOs Paranal observatory. The instrument, as well as the telescope, have been designed for very good, natural seeing-limited image quality over a 1 degree field. At the heart of the project are a square-foot photometric shutter, a 12-filter storage/exchange mechanism, a 16k x 16k CCD detector mosaic, and plenty of software for instrument control and data handling, analysis and archiving.


Monthly Notices of the Royal Astronomical Society | 2004

Low-luminosity Type II supernovae: spectroscopic and photometric evolution

A. Pastorello; L. Zampieri; Massimo Turatto; E. Cappellaro; W. P. S. Meikle; Stefano Benetti; David Branch; E. Baron; Ferdinando Patat; M Armstrong; G. Altavilla; Maria Elena Salvo; M Riello

In this paper we present spectroscopic and photometric observations for four core-collapsed supernovae (SNe), namely SNe 1994N, 1999br, 1999eu and 2001dc. Together with SN 1997D, we show that they form a group of exceptionally low-luminosity events. These SNe have narrow spectral lines (indicating low expansion velocities) and low luminosities at every phase (significantly lower than those of typical core-collapsed supernovae). The very-low luminosity during the 56 Co radioactive decay tail indicates that the mass of 56 Ni ejected during the explosion is much smaller (M Ni 2-8 x 10 -3 M ○. ) than the average (M Ni 6-10 x 10 -2 M ○. ). Two supernovae of this group (SN 1999br and SN 2001dc) were discovered very close to the explosion epoch, allowing us to determine the lengths of their plateaux (100 d) as well as establishing the explosion epochs of the other, less completely observed SNe. It is likely that this group of SNe represent the extreme low-luminosity tail of a single continuous distribution of Type II plateau supernovae events. Their kinetic energy is also exceptionally low. Although an origin from low-mass progenitors has also been proposed for low-luminosity core-collapsed SNe, recent work provides evidence in favour of the high-mass progenitor scenario. The incidence of these low-luminosity SNe could be as high as 4-5 per cent of all Type II SNe.


The Astrophysical Journal | 2004

The Rates of Hypernovae and Gamma-Ray Bursts: Implications for Their Progenitors

Ph. Podsiadlowski; Paolo A. Mazzali; K. Nomoto; Davide Lazzati; E. Cappellaro

A critical comparison of estimates for the rates of hypernovae (HNe) and gamma-ray bursts (GRBs) is presented. Within the substantial uncertainties, the estimates are shown to be quite comparable and give a galactic rate of 10-6 to 10-5 yr-1 for both events. These rates are several orders of magnitude lower than the rate of core-collapse supernovae, suggesting that the evolution leading to an HN/GRB requires special circumstances, very likely due to binary interactions. Various possible binary channels are discussed, and it is shown that these are generally compatible with the inferred rates.


Monthly Notices of the Royal Astronomical Society | 2009

SN 2005cs in M51 – II. Complete evolution in the optical and the near-infrared

Andrea Pastorello; S. Valenti; L. Zampieri; H. Navasardyan; S. Taubenberger; S. J. Smartt; A. A. Arkharov; O. Bärnbantner; H. Barwig; Stefano Benetti; P. Birtwhistle; M. T. Botticella; E. Cappellaro; M. Del Principe; F. Di Mille; G. Di Rico; M. Dolci; N. Elias-Rosa; N. V. Efimova; M. Fiedler; A. Harutyunyan; P. Höflich; W. Kloehr; V. M. Larionov; V. Lorenzi; Justyn R. Maund; N. Napoleone; M. Ragni; Michael W. Richmond; C. Ries

We present the results of the one-year long observational campaign of the type II plateau SN 2005cs, which exploded in the nearby spiral galaxy M51 (the Whirlpool galaxy). This extensive data set makes SN 2005cs the best observed low-luminosity, ^(56)Ni-poor type II plateau event so far and one of the best core-collapse supernovae ever. The optical and near-infrared spectra show narrow P-Cygni lines characteristic of this SN family, which are indicative of a very low expansion velocity (about 1000 km s^(−1) ) of the ejected material. The optical light curves cover both the plateau phase and the late-time radioactive tail, until about 380 d after core-collapse. Numerous unfiltered observations obtained by amateur astronomers give us the rare opportunity to monitor the fast rise to maximum light, lasting about 2 d. In addition to optical observations, we also present near-infrared light curves that (together with already published ultraviolet observations) allow us to construct for the first time a reliable bolometric light curve for an object of this class. Finally, comparing the observed data with those derived from a semi-analytic model, we infer for SN 2005cs a ^(56)Ni mass of about 3 × 10^(−3) M⊙, a total ejected mass of 8–13 M⊙ and an explosion energy of about 3 × 10^(50) erg .


Science | 2008

The Metamorphosis of Supernova SN 2008D/XRF 080109: A Link Between Supernovae and GRBs/Hypernovae

Paolo A. Mazzali; S. Valenti; Massimo Della Valle; Guido Chincarini; Daniel N. Sauer; Stefano Benetti; E. Pian; Tsvi Piran; Valerio D'Elia; N. Elias-Rosa; Raffaella Margutti; F. Pasotti; L. Angelo Antonelli; F. Bufano; Sergio Campana; E. Cappellaro; S. Covino; Paolo D'Avanzo; F. Fiore; Dino Fugazza; Roberto Gilmozzi; Deborah Hunter; K. Maguire; E. Maiorano; Paola Marziani; Nicola Masetti; Felix I. Mirabel; H. Navasardyan; K. Nomoto; Eliana Palazzi

The only supernovae (SNe) to show gamma-ray bursts (GRBs) or early x-ray emission thus far are overenergetic, broad-lined type Ic SNe (hypernovae, HNe). Recently, SN 2008D has shown several unusual features: (i) weak x-ray flash (XRF), (ii) an early, narrow optical peak, (iii) disappearance of the broad lines typical of SN Ic HNe, and (iv) development of helium lines as in SNe Ib. Detailed analysis shows that SN 2008D was not a normal supernova: Its explosion energy (E ≈ 6×1051 erg) and ejected mass [∼7 times the mass of the Sun (\batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(M_{{\odot}}\) \end{document})] are intermediate between normal SNe Ibc and HNe. We conclude that SN 2008D was originally a ∼30 \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(M_{{\odot}}\) \end{document} star. When it collapsed, a black hole formed and a weak, mildly relativistic jet was produced, which caused the XRF. SN 2008D is probably among the weakest explosions that produce relativistic jets. Inner engine activity appears to be present whenever massive stars collapse to black holes.


Nature | 2009

A low-energy core-collapse supernova without a hydrogen envelope

S. Valenti; Andrea Pastorello; E. Cappellaro; Stefano Benetti; Paolo A. Mazzali; Jose Manteca; Stefan Taubenberger; N. Elias-Rosa; Rafael Ferrando; A. Harutyunyan; Veli-Pekka Hentunen; Markku Nissinen; E. Pian; Massimo Turatto; L. Zampieri; S. J. Smartt

The final fate of massive stars depends on many factors. Theory suggests that some with initial masses greater than 25 to 30 solar masses end up as Wolf–Rayet stars, which are deficient in hydrogen in their outer layers because of mass loss through strong stellar winds. The most massive of these stars have cores which may form a black hole and theory predicts that the resulting explosion of some of them produces ejecta of low kinetic energy, a faint optical luminosity and a small mass fraction of radioactive nickel. An alternative origin for low-energy supernovae is the collapse of the oxygen–neon core of a star of 7–9 solar masses. No weak, hydrogen-deficient, core-collapse supernovae have hitherto been seen. Here we report that SN 2008ha is a faint hydrogen-poor supernova. We propose that other similar events have been observed but have been misclassified as peculiar thermonuclear supernovae (sometimes labelled SN 2002cx-like events). This discovery could link these faint supernovae to some long-duration γ-ray bursts, because extremely faint, hydrogen-stripped core-collapse supernovae have been proposed to produce such long γ-ray bursts, the afterglows of which do not show evidence of associated supernovae.

Collaboration


Dive into the E. Cappellaro's collaboration.

Top Co-Authors

Avatar

S. Valenti

University of California

View shared research outputs
Top Co-Authors

Avatar

Ferdinando Patat

European Southern Observatory

View shared research outputs
Top Co-Authors

Avatar

Paolo A. Mazzali

Liverpool John Moores University

View shared research outputs
Researchain Logo
Decentralizing Knowledge