Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where E. Castellano is active.

Publication


Featured researches published by E. Castellano.


Nature | 2004

Eight glacial cycles from an Antarctic ice core

Laurent Augustin; Carlo Barbante; Piers R F Barnes; Jean Marc Barnola; Matthias Bigler; E. Castellano; Olivier Cattani; J. Chappellaz; Dorthe Dahl-Jensen; Barbara Delmonte; Gabrielle Dreyfus; Gaël Durand; S. Falourd; Hubertus Fischer; Jacqueline Flückiger; M. Hansson; Philippe Huybrechts; Gérard Jugie; Sigfus J Johnsen; Jean Jouzel; Patrik R Kaufmann; Josef Kipfstuhl; Fabrice Lambert; Vladimir Ya. Lipenkov; Geneviève C Littot; Antonio Longinelli; Reginald Lorrain; Valter Maggi; Valérie Masson-Delmotte; Heinz Miller

The Antarctic Vostok ice core provided compelling evidence of the nature of climate, and of climate feedbacks, over the past 420,000 years. Marine records suggest that the amplitude of climate variability was smaller before that time, but such records are often poorly resolved. Moreover, it is not possible to infer the abundance of greenhouse gases in the atmosphere from marine records. Here we report the recovery of a deep ice core from Dome C, Antarctica, that provides a climate record for the past 740,000 years. For the four most recent glacial cycles, the data agree well with the record from Vostok. The earlier period, between 740,000 and 430,000 years ago, was characterized by less pronounced warmth in interglacial periods in Antarctica, but a higher proportion of each cycle was spent in the warm mode. The transition from glacial to interglacial conditions about 430,000 years ago (Termination V) resembles the transition into the present interglacial period in terms of the magnitude of change in temperatures and greenhouse gases, but there are significant differences in the patterns of change. The interglacial stage following Termination V was exceptionally long—28,000 years compared to, for example, the 12,000 years recorded so far in the present interglacial period. Given the similarities between this earlier warm period and today, our results may imply that without human intervention, a climate similar to the present one would extend well into the future.The Antarctic Vostok ice core provided compelling evidence of the nature of climate, and of climate feedbacks, over the past 420,000 years. Marine records suggest that the amplitude of climate variability was smaller before that time, but such records are often poorly resolved. Moreover, it is not possible to infer the abundance of greenhouse gases in the atmosphere from marine records. Here we report the recovery of a deep ice core from Dome C, Antarctica, that provides a climate record for the past 740,000 years. For the four most recent glacial cycles, the data agree well with the record from Vostok. The earlier period, between 740,000 and 430,000 years ago, was characterized by less pronounced warmth in interglacial periods in Antarctica, but a higher proportion of each cycle was spent in the warm mode. The transition from glacial to interglacial conditions about 430,000 years ago (Termination V) resembles the transition into the present interglacial period in terms of the magnitude of change in temperatures and greenhouse gases, but there are significant differences in the patterns of change. The interglacial stage following Termination V was exceptionally long—28,000 years compared to, for example, the 12,000 years recorded so far in the present interglacial period. Given the similarities between this earlier warm period and today, our results may imply that without human intervention, a climate similar to the present one would extend well into the future.


Nature | 2006

One-to-one coupling of glacial climate variability in Greenland and Antarctica.

Carlo Barbante; Jean-Marc Barnola; Silvia Becagli; J. Beer; Matthias Bigler; Claude F. Boutron; Thomas Blunier; E. Castellano; Olivier Cattani; J. Chappellaz; Dorthe Dahl-Jensen; Maxime Debret; Barbara Delmonte; Dorothee Dick; S. Falourd; S. H. Faria; Urs Federer; Hubertus Fischer; Johannes Freitag; Andreas Frenzel; Diedrich Fritzsche; Felix Fundel; Paolo Gabrielli; Vania Gaspari; Rainer Gersonde; Wolfgang Graf; D. Grigoriev; Ilka Hamann; M. Hansson; George R. Hoffmann

Precise knowledge of the phase relationship between climate changes in the two hemispheres is a key for understanding the Earth’s climate dynamics. For the last glacial period, ice core studies have revealed strong coupling of the largest millennial-scale warm events in Antarctica with the longest Dansgaard–Oeschger events in Greenland through the Atlantic meridional overturning circulation. It has been unclear, however, whether the shorter Dansgaard–Oeschger events have counterparts in the shorter and less prominent Antarctic temperature variations, and whether these events are linked by the same mechanism. Here we present a glacial climate record derived from an ice core from Dronning Maud Land, Antarctica, which represents South Atlantic climate at a resolution comparable with the Greenland ice core records. After methane synchronization with an ice core from North Greenland, the oxygen isotope record from the Dronning Maud Land ice core shows a one-to-one coupling between all Antarctic warm events and Greenland Dansgaard–Oeschger events by the bipolar seesaw6. The amplitude of the Antarctic warm events is found to be linearly dependent on the duration of the concurrent stadial in the North, suggesting that they all result from a similar reduction in the meridional overturning circulation.


Nature | 2006

Southern Ocean sea-ice extent, productivity and iron flux over the past eight glacial cycles

Eric W. Wolff; Hubertus Fischer; Felix Fundel; Urs Ruth; B. Twarloh; Geneviève C Littot; Robert Mulvaney; Regine Röthlisberger; M. de Angelis; C.F. Boutron; M. Hansson; Ulf Jonsell; Manuel A. Hutterli; Fabrice Lambert; Patrik R Kaufmann; Bernhard Stauffer; Thomas F. Stocker; Jørgen Peder Steffensen; Matthias Bigler; M.L. Siggaard-Andersen; Roberto Udisti; Silvia Becagli; E. Castellano; Mirko Severi; Dietmar Wagenbach; Carlo Barbante; Paolo Gabrielli; V. Gaspari

Sea ice and dust flux increased greatly in the Southern Ocean during the last glacial period. Palaeorecords provide contradictory evidence about marine productivity in this region, but beyond one glacial cycle, data were sparse. Here we present continuous chemical proxy data spanning the last eight glacial cycles (740,000 years) from the Dome C Antarctic ice core. These data constrain winter sea-ice extent in the Indian Ocean, Southern Ocean biogenic productivity and Patagonian climatic conditions. We found that maximum sea-ice extent is closely tied to Antarctic temperature on multi-millennial timescales, but less so on shorter timescales. Biological dimethylsulphide emissions south of the polar front seem to have changed little with climate, suggesting that sulphur compounds were not active in climate regulation. We observe large glacial–interglacial contrasts in iron deposition, which we infer reflects strongly changing Patagonian conditions. During glacial terminations, changes in Patagonia apparently preceded sea-ice reduction, indicating that multiple mechanisms may be responsible for different phases of CO2 increase during glacial terminations. We observe no changes in internal climatic feedbacks that could have caused the change in amplitude of Antarctic temperature variations observed 440,000 years ago.Sea ice and dust flux increased greatly in the Southern Ocean during the last glacial period. Palaeorecords provide contradictory evidence about marine productivity in this region, but beyond one glacial cycle, data were sparse. Here we present continuous chemical proxy data spanning the last eight glacial cycles (740,000 years) from the Dome C Antarctic ice core. These data constrain winter sea-ice extent in the Indian Ocean, Southern Ocean biogenic productivity and Patagonian climatic conditions. We found that maximum sea-ice extent is closely tied to Antarctic temperature on multi-millennial timescales, but less so on shorter timescales. Biological dimethylsulphide emissions south of the polar front seem to have changed little with climate, suggesting that sulphur compounds were not active in climate regulation. We observe large glacial–interglacial contrasts in iron deposition, which we infer reflects strongly changing Patagonian conditions. During glacial terminations, changes in Patagonia apparently preceded sea-ice reduction, indicating that multiple mechanisms may be responsible for different phases of CO2 increase during glacial terminations. We observe no changes in internal climatic feedbacks that could have caused the change in amplitude of Antarctic temperature variations observed 440,000 years ago.Its a long story...At over 3 km long, the ice core drilled at Dome C in Antarctica represents a record of 740,000 years, or eight glacial cycles. This will be the longest climate record available for years to come, so information gleaned from it will become a benchmark for Antarctic climate research. An examination of the core shows that sea ice around Antarctica waxed and waned in line with temperature over multimillennial timescales, but less so over shorter periods. During cold periods, larger amounts of dust were produced from a drier Patagonia, landing in the Southern Ocean where they probably affected marine productivity. Oceanic production of sulphur compounds, which might affect cloud nucleation, was remarkably constant throughout the period.Data from the Southern Ocean sea-ice extent, the biological productivity of the ocean, and atmospheric iron flux over the past eight glacial cycles indicate that during glacial terminations, changes in Patagonia apparently preceded Antarctic sea-ice reduction — showing that multiple mechanisms may be responsible for different phases of CO2 increase during glacial terminations.


Earth and Planetary Science Letters | 2004

A late-glacial high-resolution site and source temperature record derived from the EPICA Dome C isotope records (East Antarctica)

Barbara Stenni; Jean Jouzel; Valérie Masson-Delmotte; Regine Röthlisberger; E. Castellano; Olivier Cattani; S. Falourd; Sigfus J Johnsen; Antonio Longinelli; Julian P. Sachs; Enricomaria Selmo; Roland Souchez; Jørgen Peder Steffensen; Roberto Udisti

The timing and synchronisation of Greenland and Antarctic climate events that occurred during the last glacial period are still under debate, as is the magnitude of temperature change associated with these events. Here we present detailed records of local and moisture-source temperature changes spanning the period 27-45 kyr BP from water stable isotope measurements (deltaD and delta(18)O) in the recently drilled EPICA Dome C ice core, East Antarctic plateau. Using a simple isotopic model, site (DeltaT(site)) and source (DeltaT(source)) temperatures are extracted from the initial 50-yr high-resolution isotopic records, taking into account the changes in seawater isotopic composition. The deuterium isotope variability is very similar to the less precise deltaD record from the Vostok ice core, and the site temperature inversion leads to a temperature profile similar to the classical palaeothermometry method, due to compensations between source and ocean water corrections. The reconstructed DeltaT(site) and DeltaT(source) profiles show different trends during the glacial: the former shows a decreasing trend from the warm Al event (38 kyr BP) toward the Last Glacial Maximum, while the latter shows increasing values from 41 to 28 kyr BP. The low-frequency deuterium excess fluctuations are strongly influenced by obliquity fluctuations, controlling the low- to high-latitude temperature gradients, and show a remarkable similarity with a high-resolution southeast Atlantic sea surface temperature record. A comparison of the temperature profiles (site and source) and temperature gradient (DeltaT(source)-DeltaT(site)) with the non-sea-salt calcium and sodium records suggests a secondary influence of atmospheric transport changes on aerosol variations.


Annals of Glaciology | 2000

Holocene electrical and chemical measurements from the EPICA–Dome C ice core

Roberto Udisti; Silvia Becagli; E. Castellano; Robert Mulvaney; Jakob Schwander; S. Torcini; Eric W. Wolff

Abstract The comparison between electric (electric-conductivity measurement (ECM) and dielectric profiling (DEP)) and chemical sulphate and chloride) depth profiles along the first 400 m of the EPICA-Dome C ice core revealed a very good fit, especially for peaks related to volcanic emissions. From the comparison between these profiles, a dominant contribution of sulphuric acid to the ionic balance of Antarctic ice for the Holocene was confirmed. A progressive increase with depth was observed for chloride concentrations, showing a change of relative contribution between sulphate and chloride. A higher increase of chloride was evident between 270 and 360 m depth, probably due to a change in source or transport processes or to an increase of the annual snow-accumulation rate. The DEP, ECM and sulphate ice signatures of Tambora (AD 1816) and El Chichon (?) (AD 1259) eruptions are described in detail. A characteristic peak series, due to HCl deposition, was identified at 103–109 m depth from the ECM, DEP and chloride profiles.


Annals of Glaciology | 2004

Atmosphere–snow interaction by a comparison between aerosol and uppermost snow-layers composition at Dome C, East Antarctica

Roberto Udisti; Silvia Becagli; S. Benassai; E. Castellano; I. Fattori; Massimo Innocenti; A. Migliori; Rita Traversi

Abstract The study of aerosol composition and air–snow exchange processes is relevant to the reconstruction of past atmosphere composition from ice cores. For this purpose, aerosol samples, superficial snow layers and firn samples from snow pits were collected at Dome Concordia station, East Antarctica, during the 2000/01 summer field season. The aerosol was collected in a ‘coarse’ and a ‘fine’ fraction, roughly separated from each other by a stacked filter system (5.0 and 0.4 μm). Atomic Force Microscopy (AFM) direct measurements on the fine fraction showed that 72% of surface size distribution ranges from 1.0 x 105 to 1.2 x 106 nm2. Assuming a spherical model, the volume size distribution of particles smaller than 5.0 μm shows a mode in the radius range 0.2–0.6 μm. Ion chromatographic (IC) measurements of selected chemical components allowed calculation of the ionic balance of the two size fractions. The fine fraction is dominant, representing 86% of the total ionic budget, and it is characterized by high content of sulphate and acidity. Principal component analysis (PCA) identified sea-spray and biogenic aerosol sources and showed some particulars of the transport and depositional processes of some chemical components (Ca2+, MSA, nssSO4 2–). Comparative analysis of aerosol, surface hoar and superficial snow showed differences in chemical composition: nitrate and chloride exhibit very high concentrations in the uppermost snow layers and in the surface hoar, and low values in the aerosol. This evidence demonstrates that nitrate and chloride are mainly in gas phase at Dome C and they can be caught on the snow and hoar surface through dry deposition and adsorption processes.


Annals of Glaciology | 2002

Comparison of analytical methods used for measuring major ions in the EPICA Dome C (Antarctica) ice core

Geneviève C Littot; Robert Mulvaney; Regine Röthlisberger; Roberto Udisti; Eric W. Wolff; E. Castellano; Martine de Angelis; M. Hansson; Stefan Sommer; Jørgen Peder Steffensen

Abstract In the past, ionic analyses of deep ice cores tended to consist of a few widely spaced measurements that indicated general trends in concentration. the ion-chromatographic methods widely used provide well-validated individual data, but are time-consuming. the development of continuous flow analysis (CFA) methods has allowed very rapid, high-resolution data to be collected in the field for a wide range of ions. In the European Project for Ice Coring in Antarctica (EPICA) deep ice-core drilling at Dome C, many ions have been measured at high resolution, and several have been analyzed by more than one method. the full range of ions has been measured in five different laboratories by ion chromatography (IC), at resolutions of 2.5–10 cm. In the field, CFA was used to measure the ions Na+, Ca2+, nitrate and ammonium. Additionally, a new semi-continuous in situ IC method, fast ion chromatography (FIC), was used to analyze sulphate, nitrate and chloride. Some data are now available to 788 m depth. In this paper we compare the data obtained by the three methods, and show that the rapid methods (CFA and FIC) give an excellent indication of trends in ionic data. Differences between the data from the different methods do occur, and in some cases these are genuine, being due to differences in speciation in the methods. We conclude that the best system for most deep ice-core analysis is a rapid system of CFA and FIC, along with in situ meltwater collection for analysis of other ions by IC, but that material should be kept aside for a regular check on analytical quality and for more detailed analysis of some sections.


Annals of Glaciology | 2002

Chemical and isotopic snow variability along the 1998 ITASE traverse from Terra Nova Bay to Dome C (East-Antarctica)

Marco Proposito; Silvia Becagli; E. Castellano; O. Flora; L. Genoni; Roberto Gragnani; Barbara Stenni; Rita Traversi; Roberto Udisti; Massimo Frezzotti

Abstract In the framework of the PNRA–ITASE (Programma Nazionale di Ricerche in Antartide–International Trans-Antarctic Scientific Expedition) project, during the field season 1998/99, surface snow (1m cores and pits) and shallow firn cores (10–50m) were collected along a traverse from Terra Nova Bay (northern Victoria Land) to Dome C (East Antarctic ice sheet). Results of chemical, tritium and stable-isotope composition are presented here for the 1 m cores, some snow pits and the first 2 mof some shallow firn cores. the δ18O values show a regular trend with altitude, and the regression line between δ18O and surface temperature is δ18O = 0.99T (˚C) – 0.67. Primary aerosol components such as Na+, Cl–, Ca2+,Mg2+ and K+ show high concentrations decreasing with increasing altitude in the first 250–350km from the coast. At greater distances, concentrations of these species remain more constant. NO3 – concentration shows an irregular profile with a progressive decreasing trend as altitude increases. Non-sea-salt (nss) SO4 2– concentration decreases up to about 250 km from the coast, increases 250–770 km from the coast and remains relatively constant in the most remote stations. Methanesulphonate (MSA) concentration shows high variability. the MSA/nssSO4 2– ratio exhibits a decreasing trend 250–550km from the coast. With increasing distance, the ratio shows moderate oscillations. nssCl– concentration shows a progressive increase as distance from the coast increases, in agreement with the increasing influence of HCl on the Cl– budget of the inland Antarctic atmosphere. Post-depositional re-emissions of Cl– and NO3 – were found at stations characterized at the surface by long-term accumulation hiatus (wind crusts). the chemical-species distribution is consistent with the presence in the studied area of local and long-range transport processes, post-depositional effects and snow-accumulation variations observed along the traverse.


Geochemistry Geophysics Geosystems | 2008

Defining the geochemical composition of the EPICA Dome C ice core dust during the last glacial‐interglacial cycle

F. Marino; E. Castellano; D. Ceccato; P. De Deckker; Barbara Delmonte; Grazia Ghermandi; Valter Maggi; J. R. Petit; Marie Revel-Rolland; Roberto Udisti

The major element composition of the insoluble, windborne long-range dust archived in the European Project for Ice Coring in Antarctica Dome C ice core has been determined by Particle Induced X-ray Emission analyses. The geochemistry of dust from the last glacial maximum (LGM) and from the Holocene is discussed in terms of past environmental changes, throughout the last climatic cycle. Antarctic dust from glacial and interglacial climate clearly reveals different geochemical compositions. The weathered crustal-like signature of LGM dust is characterized by a low compositional variability, suggesting a dominant source under the glacial regime. The close correspondence between the major element composition of Antarctic glacial dust and the composition of southern South American sediments supports the hypothesis of a dominant role of this area as major dust supplier during cold conditions. Conversely, the major element composition of Holocene dust displays high variability and high Al content on average. This implies that an additional source could also play some role. Comparison with size-selected sediments suggests that a contribution from Australia is likely during warm times, when a reduced glacial erosion decreases the primary dust production and a more intense hydrological cycle and larger vegetation cover inactivates dust mobility in a large part of southern South America, weakening its contribution as a massive dust supplier to Antarctica.


International Journal of Environmental Analytical Chemistry | 2004

SPATIAL AND TEMPORAL DISTRIBUTION OF ENVIRONMENTAL MARKERS FROM COASTAL TO PLATEAU AREAS IN ANTARCTICA BY FIRN CORE CHEMICAL ANALYSIS

Rita Traversi; Silvia Becagli; E. Castellano; O. Largiuni; A. Migliori; Mirko Severi; Massimo Frezzotti; Roberto Udisti

The chemical analysis of shallow firn cores sampled in coastal and plateau areas in Northern Victoria Land and along a transect from Talos Dome to Dome C (East Antarctica, Pacific Ocean sector) allowed a global view of spatial and temporal changes in chemical composition of snow depositions over the last 100 years. Variations in concentration of primary (sea spray) and secondary (biogenic emission, atmospheric inputs) source markers were observed and discussed as a function of distance from the sea and altitude. In the stations characterized by relatively high snow accumulation rates, the sub-sampling resolution was sufficient to obtain a stratigraphic dating by using the periodical variations of seasonal markers. In these stations, a subdivision in “summer” and “winter” samples was carried out in order to study the seasonal changes of the contributions of the measured compounds to the snow composition as elevation and distance from the sea increase. Some evidence of post-depositional effects which are able to change the original deposition of chloride and nitrate, was observed at stations with low accumulation rates. The reliability of the depth/concentration profile of these substances for reconstructing past deposition was also discussed.

Collaboration


Dive into the E. Castellano's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Urs Ruth

Alfred Wegener Institute for Polar and Marine Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge