Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where E Chin is active.

Publication


Featured researches published by E Chin.


Medical Physics | 2015

TU-CD-304-01: FEATURED PRESENTATION and BEST IN PHYSICS (THERAPY): Trajectory Modulated Arc Therapy: Development of Novel Arc Delivery Techniques Integrating Dynamic Table Motion for Extended Volume Treatments

E Chin; K Otto; Richard T. Hoppe; Lynn Million; Billy W. Loo; Albert C. Koong; Lei Xing; A Hsu; B Fahimian

Purpose: Integration of coordinated robotic table motion with inversely-planned arc delivery has the potential to resolve table-top delivery limitations of large-field treatments such as Total Body Irradiation (TBI), Total Lymphoid Irradiation (TLI), and Cranial-Spinal Irradiation (CSI). We formulate the foundation for Trajectory Modulated Arc Therapy (TMAT), and using Varian Developer Mode capabilities, experimentally investigate its practical implementation for such techniques. Methods: A MATLAB algorithm was developed for inverse planning optimization of the table motion, MLC positions, and gantry motion under extended-SSD geometry. To maximize the effective field size, delivery trajectories for TMAT TBI were formed with the table rotated at 270° IEC and dropped vertically to 152.5cm SSD. Preliminary testing of algorithm parameters was done through retrospective planning analysis. Robotic delivery was programmed using custom XML scripting on the TrueBeam Developer Mode platform. Final dose was calculated using the Eclipse AAA algorithm. Initial verification of delivery accuracy was measured using OSLDs on a solid water phantom of varying thickness. Results: A comparison of DVH curves demonstrated that dynamic couch motion irradiation was sufficiently approximated by static control points spaced in intervals of less than 2cm. Optimized MLC motion decreased the average lung dose to 68.5% of the prescription dose. The programmed irradiation integrating coordinated table motion was deliverable on a TrueBeam STx linac in 6.7 min. With the couch translating under an open 10cmx20cm field angled at 10°, OSLD measurements along the midline of a solid water phantom at depths of 3, 5, and 9cm were within 3% of the TPS AAA algorithm with an average deviation of 1.2%. Conclusion: A treatment planning and delivery system for Trajectory Modulated Arc Therapy of extended volumes has been established and experimentally demonstrated for TBI. Extension to other treatment techniques such as TLI and CSI is readily achievable through the developed platform. Grant Funding by Varian Medical Systems.


Medical Physics | 2016

SU-F-T-481: Physics Evaluation of a Newly Released InCise™ Multileaf Collimator for CyberKnife M6™ System

L Wang; E Chin; A Lo

PURPOSE This work reports the results of the physics evaluation of a newly released InCise™2 Multileaf Collimator (MLC) installed in our institution. METHODS Beam property data was measured with unshielded diode and EBT2 films. The measurements included MLC leaf transmission, beam profiles, output factors and tissue-phantom ratios. MLC performance was evaluated for one month after commissioning. Weekly Garden Fence tests were performed for leaf / bank positioning in standard (A/P) and clinically relevant non-standard positions, before and after MLC driving exercises of 10+ minutes. Daily Picket Fence test and AQA test, End-to-End tests and dosimetric quality assurance were performed to evaluate the overall system performance. RESULTS All measurements including beam energy, flatness and symmetry, were within manufacture specifications. Leaf transmission was 0.4% <0.5% specification. The values of output factors ranged from 0.825 (7.6 mm × 7.5 mm) to 1.026 (115.0 mm × 100.1 mm). Average beam penumbra at 10 cm depth ranged from 2.7mm/2.7mm(7.6 mm × 7.5 mm) to 6.0 mm/6.2mm(84.6 mm × 84.7 mm). Slight penumbra difference (<10% from average penumbra for fields >20 mm) was observed in the direction perpendicular to leaf motion due to the tilting of the leaf housing. Mean leaf position offsets was -0.08±0.07mm and -0.13 ± 0.08 for X1 and X2 leaf banks in 13 Garden Fence tests. No significant difference on average leaf positioning offsets was observed between different leaf orientations and before/after MLC driving exercises. Six End-to-End tests showed 0.43±0.23mm overall targeting accuracy. Picket-Fence and AQA showed stable performance of MLC during the test period. Dosimetric point dose measurements for test cases agreed with calculation within 3%. All film measurements on relative dose had Gamma (2%, 2mm) passing rate of >95%. CONCLUSION The Incise™2 MLC for CyberKnife M6™ was proven to be accurate and reliable, and it is currently in clinical use. Stanford was one of the physics evaluation sites for the newly released InCise 2 MLC for Accuray Inc.


Medical Physics | 2016

SU-F-T-503: Trajectory Modulated Arc Therapy of Intracranial Lesions: Development of a Standardized Path-Based Technique for Fully Dynamic Couch-Gantry Modulated Treatments

S.J. Khan; E Chin; K Otto; Lei Xing; Dimitre Hristov; B Fahimian

PURPOSE The integration of couch motion during arc delivery is necessitated to enable irradiation trajectories such as coronal arcs, and to enhance the geometrical sampling for dynamic deliveries to the highest extent. To enable such capability, a platform of Trajectory Modulated Arc Therapy (TMAT) is developed in conjunction with standardized noncollisional dynamic path-set for irradiation of intracranial lesions. METHODS A generalized path-set was constructed through the combination of sagittal arcs (45 degrees from the CAX), axial arcs, and coronal arcs produced through modulation of the dynamic rotation of couch. The standardized path was implemented in a contiguous manner enabling the formation of fully automated sub-trajectories to provide maximal geometrical convergence with minimal number of arcs. Progressive sampling technique is used for direct aperture optimization of the MLCs and the selection of couch positions across the control points. Dosimetry of the resulting plans was assessed relative to clinically delivered plans. Using the TrueBeam Developer Mode, plan deliverability was tested. RESULTS Treatment planning of TMAT sub-trajectories for central, anterior and posterior tumor sites with volumes ranging from 4.75cc to 107cc demonstrated radically reduced doses to the critical OARs when compared to the clinically treated VMAT. Specifically, percentage reduction in mean dose for critical organs such as brainstem, cochlea, and optic nerve are found to be as low as 74±15%, 50±26% and 74±30% respectively as compared to VMAT. Conformity Index, defined as the ratio of tumor volume (VPTV) and 100% dose volume (V(D100%)), was reduced up to 12% while the Gradient Index, defined as V(D100%)/V(D50%), was concurrently improved by up to 14%. CONCLUSION An automated standardized trajectory with dynamically modulated couch-gantry arcs has been developed for intracranial radiotherapy. Through the incorporation of coronal arcs, it is demonstrated that significantly reduced OAR doses can be achieved relative to clinically treated patient plans via VMAT. Research Grant Funding Support by Varian Medical Systems.


Medical Physics | 2015

SU‐E‐T‐746: The Use of Radiochromic Film Analyzed with Three Channel Dosimetry as a Secondary Patient‐Specific QA Tool for Small SBRT Fields

M Hadsell; C Holcombe; E Chin; A Hsu

Introduction: As diagnostic techniques become more sensitive and targeting methods grow in accuracy, target volumes continue to shrink and SBRT becomes more prevalent. Due to this fact, patient-specific QA must also enhance resolution and accuracy in order to verify dose delivery in these volumes. It has been suggested that when measuring small fields at least two separate detectors be used to verify delivered dose. Therefore, we have instituted a secondary patient QA verification for small (<3cm) SBRT fields using Gafchromic EBT2 film. Methods: Films were cross-calibrated using a Farmer chamber in plastic water at reference conditions as defined by TG-51. Films were scanned, and an RGB calibration curve was created according to best practices published by Ashland, Inc. Four SBRT cases were evaluated both with the Scandidos Delta4 and with EBT2 films sandwiched in plastic water. Raw values obtained from the film were converted to dose using an in-house algorithm employing all three color channels to increase accuracy and dosimetric range. Gamma and dose profile comparisons to Eclipse dose calculations were obtained using RIT and compared to values obtained with the Delta4. Results: Film gamma pass rates at 2% and 2mm were similar to those obtained with the Delta4. However, dose difference histograms showed better absolute dose agreement, with the average mean film dose agreeing with calculation to 0.3% and the Delta4 only agreeing to 3.1% across the cases. Additionally, films provided more resolution than the Delta4 and thus their dose profiles better succeeded in diagnosing dose calculation inaccuracies. Conclusion: We believe that the implementation of secondary patient QA using EBT2 film analyzed with all three color channels is an invaluable tool for evaluation of small SBRT fields. Furthermore, we have shown that this method can sometimes provide a more detailed and faithful reproduction of plan dose than the Delta4.


Medical Physics | 2014

Poster — Thur Eve — 38: Feasibility of a Table-Top Total Body Irradiation Technique using Robotic Couch Motion

E Chin; Karl Otto; Richard T. Hoppe; A Hsu; Billy W. Loo; Lynn Million; Lei Xing; B Fahimian

Purpose: To develop and test the feasibility of a table-top implementation for total body irradiation (TBI) via robotic couch motion and coordinated monitor unit modulation on a standard C-arm linac geometry. Methods: To allow for collision free delivery and to maximize the effective field size, the couch was rotated to 270° IEC and dropped to 150 cm from the vertical radiation source. The robotic delivery was programmed using the TrueBeam STx Developer Mode using custom XML scripting. To assess the dosimetry of a sliding 30×20 cm2 field, irradiation on a solid water phantom of varying thickness was analyzed using EDR2 radiographic film and OSLDs. Beam modulation was achieved by dividing the couch path into multiple segments of varying dose rates and couch speeds in order to deliver 120 cGy to the midline. Results: The programmed irradiation in conjunction with coordinated couch motion was successfully delivered on a TrueBeam linac. When no beam modulation was employed, the dose difference between two different phantom sections was 17.0%. With simple beam modulation via changing dose rates and couch speeds, the desired prescription dose can be achieved at the centre of each phantom section within 1.9%. However, dose deviation at the junction was 9.2% due to the nonphysical change in the phantom thickness. Conclusions: The feasibility of robotic table-top TBI on a C-arm linac geometry was experimentally demonstrated. To achieve a more uniform dose distribution, inverse-planning allowing for a combination of dose rate modulation, jaw tracking and MLC motion is under investigation.


Medical Physics | 2014

SU‐E‐T‐309: Tangential Modulated Arc Therapy: A Novel Technique for the Treatment of Superficial Disease

M Hadsell; E Chin; Ruijiang Li; Lei Xing; K Bush

PURPOSE We propose a new type of treatment that employs a modulated and sliding tangential photon field to provide superior coverage of superficial targets when compared to other commonly employed methods while drastically reducing dose to the underlying sensitive structures often present in these cases. METHODS Modulated treatment plans were formulated for a set of three representative cases. The first was a revised treatment of a scalp sarcoma, while the second was a treatment of a right posterior chest wall sarcoma. For these cases, asymmetric jaw placement, angular limitations, and central isocenter placements were used to force the optimization algorithm into finding solutions with beamlines that were not perpendicular to the body surface. The final case targeted the chest wall of a breast cancer patient, in which standard treatments were compared to the use of modulated fields with multiple isocenters along the chest wall. RESULTS When compared with unrestricted modulated arcs, the tangential arc scalp treatment reduced the max and mean doses delivered to the brain by 33Gy (from 55 to 22Gy) and 6Gy (from 14Gy to 8Gy), respectively. In the right posterior chest wall case, the V10 in the ipsilateral lung was kept below 5% while retaining a Rx dose (45Gy) target coverage of over 97%. For the breast case, the modulated plan achieved reductions in high dose to the ipsilateral lung and heart by a factor of 2-3 when compared to classic laterally opposed tangents and reduced the V5 by 40% when compared to standard modulated arcs. CONCLUSION Tangential modulated arc therapy has outperformed the conventional modalities of treatment for superficial lesions used in our clinic. We hope that with the advent of digitally controlled linear accelerators, we can uncover further benefits of this new technique and extend its applicability to a wider section of the patient population.


Medical Physics | 2014

SU‐E‐T‐434: Evaluation of the Machine Performance Check (MPC) Program for Truebeam 2.0

E Chin; S Yu; M Hadsell; K Bush; E Mok

PURPOSE Machine Performance Check (MPC) is a software application used to verify that the TrueBeam machine is operating within major specifications prior to treatment. Used in combination with a phantom named Isocal, it verifies beam output, beam uniformity, treatment isocenter size, coincidence of treatment and imaging isocenters, positioning accuracy of kV and MV imaging systems, accuracy of collimator and gantry rotation angle, positioning accuracy of jaws and MLC leafs, and couch positioning. The tests can be performed semi-automatically and requires approximately 10 minutes of machine time. It is the purpose of this study to report the performance of this program. METHODS A pre-release version of the MPC tool was installed on a Truebeam linac with 6D couch at our center. Baseline beam output measurements were taken for 5 photon beams (6-15 MV, 6 FFF, 10 FFF) and 5 electron beams (6-20 MeV). Deviations from the baseline output were subsequently recorded for several days and compared against independent measurements from a PTW farmer chamber and our daily QA device (Fluke Biomedical Tracker) as part of an ongoing evaluation. RESULTS The beam output deviations between the MPC and the PTW chamber measurements were within ±0.7% for photons beams and ±1.0% for electrons beams. This was similar to the tracker performance. There were some isolated incidents where the MPC measurements had unexplained spikes (>3%) that disappeared on a repeat measurement. MPC was also able to detect maximum positioning errors in the jaws (1.12 mm), MLCs (1.14 mm), and couch roll (0.11°). CONCLUSION Overall, the ability of the MPC to monitor linac output stability was comparable to that of ionization chamber-based measurements. MPC also provided fast daily mechanical tests not currently available in the clinic. How best to utilize this previously unavailable data is still under investigation.


Medical Physics | 2014

TH-C-12A-09: Planning and Delivery of the Fully Dynamic Trajectory Modulated Arc Therapy: Application to Accelerated Partial Breast Irradiation

J Liang; Todd F. Atwood; B Fahimian; E Chin; K Otto; Dimitre Hristov

PURPOSE A novel trajectory modulated arc therapy (TMAT) system was developed that uses source motion trajectory involving synchronized gantry rotation with translational and rotational couch movement. MLC motion and dose rate were fully optimized for dynamic beam delivery. This work presents a platform for planning deliverable TMAT on a collision free coronal trajectory and evaluates its benefit for accelerated partial breast irradiation (APBI) in a prone position. METHODS The TMAT algorithm was built on VMAT with modifications (physical properties on couch movement were defined) and enhancements (pencil beam dose calculation engine to support extended SSDs) to make it feasible for TMAT delivery. A Matlab software environment for TMAT optimization and dose calculation was created to allow any user specified motion axis. TMAT delivery was implemented on Varian TrueBeamTM STx via XML scripts. 10 prone breast irradiation cases were evaluated in VMAT and compared with a 6- field non-coplanar IMRT plan. Patient selection/exclusion criteria and structure contouring followed the guidelines of NSABP B-39/RTOG 0413 protocol. RESULTS TMAT delivery time was ∼4.5 minutes. 251.5°±7.88° of non-isocentric couch arc was achieved by the optimized trajectory with 180- 210 control points at 1°-2° couch increments. The improved dose distribution by TMAT was most clearly observed by the marked reduction in the volume of irradiated normal breast tissue in the high dose region. The ratios of the normal breast tissue volume receiving more than 50%, 80% and 100% of the prescription dose for TMAT versus IMRT were: V50%(TMAT/IMRT) = 78.38%±13.03%, V80%(TMAT/IMRT) = 44.19%±9.04% and V100% (TMAT/IMRT) = 9.96%±7.55%, all p≤0.01. CONCLUSION The study is the first demonstration of planning and delivery implementation of a fully dynamic APBI TMAT system with continuous couch motion. TMAT achieved significantly improved dosimetry over noncoplanar IMRT on dose volume parameters correlated with toxicity and cosmetic outcome of APBI. This project was supported by Varian Research Grant.


International Journal of Radiation Oncology Biology Physics | 2014

Trajectory Modulated Arc Therapy: A Fully Dynamic Delivery With Synchronized Couch and Gantry Motion Significantly Improves Dosimetric Indices Correlated With Poor Cosmesis in Accelerated Partial Breast Irradiation

Jieming Liang; Todd F. Atwood; Rie von Eyben; B Fahimian; E Chin; Kathleen C. Horst; K Otto; Dimitre Hristov


International Journal of Radiation Oncology Biology Physics | 2016

Beyond VMAT-Assessing the Potential of Noncoplanar Arc Delivery Trajectories Incorporating Dynamic Couch Motion in Intracranial Radiation Therapy.

S.J. Khan; E Chin; K Otto; Dimitre Hristov; Lei Xing; B Fahimian

Collaboration


Dive into the E Chin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

K Otto

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

A Hsu

Stanford University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

K Bush

Stanford University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge