Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where E. de Geus is active.

Publication


Featured researches published by E. de Geus.


The Astrophysical Journal | 1994

Molecular clouds in the extreme outer galaxy

Seth W. Digel; E. de Geus; P. Thaddeus

We present observation of 11 molecular clouds with kinematic Galactocentric distances of 18-28 kpc. The most distant is approximately 10 kpc farther from the Galactic center than any previously known and apparently lies beyond the edge of the optical disk. All are associated with much larger H I concentrations, with typical offsets of approximately 40 pc from the H I peaks. CO observations with the CfA 1.2 m and National Radio Astronomy Observatory (NRAO) 12 m telescopes indicate typical sizes of 20-40 pc, velocity widths of 1-3 km/s, and kinetic temperatures of 10-25 K. They apparently have lower CO luminosities than clouds near the solar circle with similar properties. Some may have associated infrared sources, but owing to the great distances of the clouds, the only general conclusion that can be made about star formation is that stars earlier than B1 are absent. The apparent scarcity of clouds like these indicates that their contribution to the mass of the ISM beyond R = 18 kpc is not significant.


Astronomy and Astrophysics | 2014

LOFAR tied-array imaging of Type III solar radio bursts

D. E. Morosan; Peter T. Gallagher; Pietro Zucca; R. A. Fallows; Eoin P. Carley; G. Mann; M. M. Bisi; A. Kerdraon; A. A. Konovalenko; Alexander L. MacKinnon; Helmut O. Rucker; B. Thidé; J. Magdalenić; C. Vocks; Hamish A. S. Reid; J. Anderson; A. Asgekar; I. M. Avruch; Marinus Jan Bentum; G. Bernardi; Philip Best; A. Bonafede; Jaap D. Bregman; F. Breitling; J. Broderick; M. Brüggen; H. R. Butcher; B. Ciardi; John Conway; F. de Gasperin

The Sun is an active source of radio emission which is often associated with energetic phenomena such as solar flares and coronal mass ejections (CMEs). At low radio frequencies (<100 MHz), the Sun has not been imaged extensively because of the instrumental limitations of previous radio telescopes. Here, the combined high spatial, spectral and temporal resolution of the Low Frequency Array (LOFAR) was used to study solar Type III radio bursts at 30-90 MHz and their association with CMEs. The Sun was imaged with 126 simultaneous tied-array beams within 5 solar radii of the solar centre. This method offers benefits over standard interferometric imaging since each beam produces high temporal (83 ms) and spectral resolution (12.5 kHz) dynamic spectra at an array of spatial locations centred on the Sun. LOFARs standard interferometric output is currently limited to one image per second. Over a period of 30 minutes, multiple Type III radio bursts were observed, a number of which were found to be located at high altitudes (4 solar radii from the solar center at 30 MHz) and to have non-radial trajectories. These bursts occurred at altitudes in excess of values predicted by 1D radial electron density models. The non-radial high altitude Type III bursts were found to be associated with the expanding flank of a CME. The CME may have compressed neighbouring streamer plasma producing larger electron densities at high altitudes, while the non-radial burst trajectories can be explained by the deflection of radial magnetic fields as the CME expanded in the low corona.


The Astrophysical Journal | 1994

Gamma-ray observations of Ophiuchus with EGRET: The diffuse emission and point sources

Stanley D. Hunter; Seth W. Digel; E. de Geus; G. Kanbach

Observations of the Ophiuchus region made with the Energetic Gamma-Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory (CGRO) during the first 2 1/2 years of operation show the diffuse emission from the interstellar gas in Ophiuchus as well as variable emission from two point sources. The gamma-ray emission is modeled in terms of cosmic-ray interactions with atomic and molecular hydrogen in Ophiuchus and with low-energy photons along the line of sight. The model also includes the flux from the two point sources and an isotropic diffuse contribution. The cosmic-ray density is assumed to be uniform. The derived ratio of molecular hydrogen column density to integrated CO intensity is (1.1 +/- 0.2) x 10(exp 20) H-mols/sq cm (K km/s)(exp -1). At the sensitivity and resolution of the gamma-ray data, no variation of this ratio over the modeled region is discernible, nor are any regions of enhanced cosmic-ray density apparent. The model was fitted to seven narrow energy bands to obtain the energy depedence of the gamma-ray production function and the spectra of the point sources. The derived production function is in good agreement with theoretical calculations and the local cosmic-ray electron and proton spectra. The positions of the point sources were determined from maximum likelihood analysis of the gamma-ray emission observed in excess of the diffuse model. We identify one point source with the quasar PKS 1622-253, which has an average flux, E greater than 100 MeV, of (2.5 +/- 0.5) x 10(exp -7) photons/sq cm/s and photon spectral index -1.9 +/- 0.3. The other source, denoted GRO J1631-27, has not yet been identified at other wavelengths. Its average flux, E greater than 100 MeV, is (1.1 +/- 0.4) x 10(exp -7) photons/sq cm/s; however, its spectral index is poorly determined. The spectral index and intensity of the isotropic contribution to the model agree well with the extragalactic diffuse emission derived from the SAS 2 data.


Physical Review Letters | 2015

Probing atmospheric electric fields in thunderstorms through radio emission from cosmic-ray induced air showers

P. Schellart; T. n. g. Trinh; S. Buitink; A. Corstanje; J. E. Enriquez; H. Falcke; J.R. Hörandel; A. Nelles; J. P. Rachen; L. Rossetto; Olaf Scholten; S. ter Veen; Satyendra Thoudam; Ute Ebert; C. Koehn; Casper Rutjes; A. Alexov; J. Anderson; I. M. Avruch; Marinus Jan Bentum; G. Bernardi; Philip Best; A. Bonafede; F. Breitling; John Broderick; M. Brüggen; H. r. Butcher; B. Ciardi; E. de Geus; M. de Vos

We present measurements of radio emission from cosmic ray air showers that took place during thunderstorms. The intensity and polarization patterns of these air showers are radically different from those measured during fair-weather conditions. With the use of a simple two-layer model for the atmospheric electric field, these patterns can be well reproduced by state-of-the-art simulation codes. This in turn provides a novel way to study atmospheric electric fields.


Astroparticle Physics | 2015

The shape of the radio wavefront of extensive air showers as measured with LOFAR

A. Corstanje; P. Schellart; A. Nelles; S. Buitink; J. E. Enriquez; H. Falcke; W. Frieswijk; J.R. Hörandel; M. Krause; J. P. Rachen; Olaf Scholten; S. ter Veen; Satyendra Thoudam; T. N. G. Trinh; M. van den Akker; A. Alexov; J. Anderson; I. M. Avruch; M. E. Bell; Marinus Jan Bentum; G. Bernardi; Philip Best; A. Bonafede; F. Breitling; J. Broderick; M. Brüggen; H. R. Butcher; B. Ciardi; F. de Gasperin; E. de Geus

Extensive air showers, induced by high energy cosmic rays impinging on the Earths atmosphere, produce radio emission that is measured with the LOFAR radio telescope. As the emission comes from a finite distance of a few kilometers, the incident wavefront is non-planar. A spherical, conical or hyperbolic shape of the wavefront has been proposed, but measurements of individual air showers have been inconclusive so far. For a selected high-quality sample of 161 measured extensive air showers, we have reconstructed the wavefront by measuring pulse arrival times to sub-nanosecond precision in 200 to 350 individual antennas. For each measured air shower, we have fitted a conical, spherical, and hyperboloid shape to the arrival times. The fit quality and a likelihood analysis show that a hyperboloid is the best parametrization. Using a non-planar wavefront shape gives an improved angular resolution, when reconstructing the shower arrival direction. Furthermore, a dependence of the wavefront shape on the shower geometry can be seen. This suggests that it will be possible to use a wavefront shape analysis to get an additional handle on the atmospheric depth of the shower maximum, which is sensitive to the mass of the primary particle.


Astronomy and Astrophysics | 2016

Wide-Band, Low-Frequency Pulse Profiles of 100 Radio Pulsars with LOFAR

M. Pilia; J. W. T. Hessels; B. W. Stappers; V. I. Kondratiev; M. Kramer; J. van Leeuwen; P. Weltevrede; A. G. Lyne; K. Zagkouris; T. E. Hassall; A. V. Bilous; R.P. Breton; H. Falcke; Jean-Mathias Grießmeier; E. Keane; A. Karastergiou; M. Kuniyoshi; A. Noutsos; S. Oslowski; M. Serylak; C. Sobey; S. ter Veen; A. Alexov; J. Anderson; A. Asgekar; I. M. Avruch; M. E. Bell; Marinus Jan Bentum; G. Bernardi; L. Bîrzan

Context. LOFAR offers the unique capability of observing pulsars across the 10−240 MHz frequency range with a fractional bandwidth of roughly 50%. This spectral range is well suited for studying the frequency evolution of pulse profile morphology caused by both intrinsic and extrinsic effects such as changing emission altitude in the pulsar magnetosphere or scatter broadening by the interstellar medium, respectively. Aims. The magnitude of most of these effects increases rapidly towards low frequencies. LOFAR can thus address a number of open questions about the nature of radio pulsar emission and its propagation through the interstellar medium. Methods. We present the average pulse profiles of 100 pulsars observed in the two LOFAR frequency bands: high band (120–167 MHz, 100 profiles) and low band (15–62 MHz, 26 profiles). We compare them with Westerbork Synthesis Radio Telescope (WSRT) and Lovell Telescope observations at higher frequencies (350 and 1400 MHz) to study the profile evolution. The profiles were aligned in absolute phase by folding with a new set of timing solutions from the Lovell Telescope, which we present along with precise dispersion measures obtained with LOFAR. Results. We find that the profile evolution with decreasing radio frequency does not follow a specific trend; depending on the geometry of the pulsar, new components can enter into or be hidden from view. Nonetheless, in general our observations confirm the widening of pulsar profiles at low frequencies, as expected from radius-to-frequency mapping or birefringence theories.


Astronomy and Astrophysics | 2015

LOFAR tied-array imaging and spectroscopy of solar S bursts

D. E. Morosan; Peter T. Gallagher; Pietro Zucca; Aidan O’Flannagain; R. A. Fallows; Hamish A. S. Reid; J. Magdalenić; G. Mann; M. M. Bisi; A. Kerdraon; A. A. Konovalenko; Alexander L. MacKinnon; Helmut O. Rucker; B. Thidé; C. Vocks; A. Alexov; J. Anderson; A. Asgekar; I. M. Avruch; Marinus Jan Bentum; G. Bernardi; A. Bonafede; F. Breitling; John Broderick; W. N. Brouw; H. R. Butcher; B. Ciardi; E. de Geus; J. Eislöffel; H. Falcke

Context. The Sun is an active source of radio emission that is often associated with energetic phenomena ranging from nanoflares to coronal mass ejections (CMEs). At low radio frequencies (<100 MHz), numerous millisecond duration radio bursts have been reported, such as radio spikes or solar S bursts (where S stands for short). To date, these have neither been studied extensively nor imaged because of the instrumental limitations of previous radio telescopes. Aims. Here, Low Frequency Array (LOFAR) observations were used to study the spectral and spatial characteristics of a multitude of S bursts, as well as their origin and possible emission mechanisms. Methods. We used 170 simultaneous tied-array beams for spectroscopy and imaging of S bursts. Since S bursts have short timescales and fine frequency structures, high cadence (~50 ms) tied-array images were used instead of standard interferometric imaging, that is currently limited to one image per second. Results. On 9 July 2013, over 3000 S bursts were observed over a time period of ~8 hours. S bursts were found to appear as groups of short-lived (<1 s) and narrow-bandwidth (~2.5 MHz) features, the majority drifting at ~3.5 MHz/s and a wide range of circular polarisation degrees (2-8 times more polarised than the accompanying Type III bursts). Extrapolation of the photospheric magnetic field using the potential field source surface (PFSS) model suggests that S bursts are associated with a trans-equatorial loop system that connects an active region in the southern hemisphere to a bipolar region of plage in the northern hemisphere. Conclusions. We have identified polarised, short-lived solar radio bursts that have never been imaged before. They are observed at a height and frequency range where plasma emission is the dominant emission mechanism, however they possess some of the characteristics of electron-cyclotron maser emission.


Monthly Notices of the Royal Astronomical Society | 2015

Lunar occultation of the diffuse radio sky: LOFAR measurements between 35 and 80 MHz

H. K. Vedantham; Luitje Koopmans; de Antonius Bruyn; Stefan J. Wijnholds; M. A. Brentjens; F. B. Abdalla; K. M. B. Asad; G. Bernardi; S. Bus; E. Chapman; B. Ciardi; S. Daiboo; Elizabeth R. Fernandez; Abhirup Ghosh; G. Harker; Vibor Jelić; Hannes Jensen; S. Kazemi; P. Lambropoulos; O. Martinez-Rubi; Garrelt Mellema; M. Mevius; A. R. Offringa; V. N. Pandey; A. H. Patil; Rajat M. Thomas; V. Veligatla; S. Yatawatta; Saleem Zaroubi; J. Anderson

We present radio observations of the Moon between 35 and 80 MHz to demonstrate a novel technique of interferometrically measuring large-scale diffuse emission extending far beyond the primary beam (global signal) for the first time. In particular, we show that (i) the Moon appears as a negative-flux source at frequencies 35 z > 12) and the Epoch of Reionization (12 > z > 5).


Astronomy and Astrophysics | 2015

The peculiar radio galaxy 4C 35.06: a case for recurrent AGN activity?

A. Shulevski; Raffaella Morganti; Pieter Barthel; M. Murgia; R. J. van Weeren; G. J. White; M. Brüggen; M. Kunert-Bajraszewska; M. Jamrozy; Philip Best; H. J. A. Röttgering; K. T. Chyży; F. de Gasperin; L. Bîrzan; G. Brunetti; M. Brienza; D. A. Rafferty; J. Anderson; R. Beck; Adam T. Deller; P. Zarka; Dominik J. Schwarz; E. K. Mahony; E. Orru; M. E. Bell; Marinus Jan Bentum; G. Bernardi; A. Bonafede; F. Breitling; John Broderick

Using observations obtained with the LOw Fequency ARray (LOFAR), the Westerbork Synthesis Radio Telescope (WSRT) and archival Very Large Array (VLA) data, we have traced the radio emission to large scales in the complex source 4C 35.06 located in the core of the galaxy cluster Abell 407. At higher spatial resolution (~ 4″), the source was known to have two inner radio lobes spanning 31 kpc and a diffuse, low-brightness extension running parallel to them, offset by about 11 kpc (in projection). At 62 MHz, we detect the radio emission of this structure extending out to 210 kpc. At 1.4 GHz and intermediate spatial resolution (~ 30″), the structure appears to have a helical morphology. We have derived the characteristics of the radio spectral index across the source. We show that the source morphology is most likely the result of at least two episodes of AGN activity separated by a dormant period of around 35 Myr. The outermost regions of radio emission have a steep spectral index (α< − 1), indicative of old plasma. We connect the spectral index properties of the resolved source structure with the integrated fluxdensity spectral index of 4C 35.06 and suggest an explanation for its unusual integrated flux density spectral shape (a moderately steep power law with no discernible spectral break), possibly providing a proxy for future studies of more distant radio sources through inferring their detailed spectral index properties and activity history from their integrated spectral indices. The AGN is hosted by one of the galaxies located in the cluster core of Abell 407. We propose that it is intermittently active as it moves in the dense environment in the cluster core. In this scenario, the AGN turned on sometime in the past, and has produced the helical pattern of emission, possibly a sign of jet precession/merger during that episode of activity. Using LOFAR, we can trace the relic plasma from that episode of activity out to greater distances from the core than ever before. Using the the WSRT, we detect H I in absorption against the center of the radio source. The absorption profile is relatively broad (FWHM of 288 kms-1), similar to what is found in other clusters. The derived column density is NHI ~ 4 × 1020 cm-2 for a Tspin = 100 K. This detection supports the connection – already suggested for other restarted radio sources – between the presence of cold gas and restarting activity. The cold gas appears to be dominated by a blue-shifted component although the broad H I profile could also include gas with different kinematics. Understanding the duty cycle of the radio emission as well as the triggering mechanism for starting (or restarting) the radio-loud activity can provide important constraints to quantify the impact of AGN feedback on galaxy evolution. The study of these mechanisms at low frequencies using morphological and spectral information promises to bring new important insights in this field.


Astronomy and Astrophysics | 2015

Wide-field LOFAR imaging of the field around the double-double radio galaxy B1834+620 - A fresh view on a restarted AGN and doubeltjes

E. Orru; S. van Velzen; R. Pizzo; S. Yatawatta; R. Paladino; M. Iacobelli; M. Murgia; H. Falcke; Raffaella Morganti; A. G. de Bruyn; C. Ferrari; J. Anderson; A. Bonafede; D. D. Mulcahy; A. Asgekar; I. M. Avruch; R. Beck; M. E. Bell; I. van Bemmel; Marinus Jan Bentum; G. Bernardi; Philip Best; F. Breitling; J. Broderick; M. Brüggen; H. R. Butcher; B. Ciardi; John Conway; A. Corstanje; E. de Geus

Context. The existence of double-double radio galaxies (DDRGs) is evidence for recurrent jet activity in AGN, as expected from standard accretion models. A detailed study of these rare sources provides new perspectives for investigating the AGN duty cycle, AGN-galaxy feedback, and accretion mechanisms. Large catalogues of radio sources, on the other hand, provide statistical information about the evolution of the radio-loud AGN population out to high redshifts. Aims. Using wide-field imaging with the LOFAR telescope, we study both a well-known DDRG as well as a large number of radio sources in the field of view. Methods. We present a high resolution image of the DDRG B1834+620 obtained at 144 MHz using LOFAR commissioning data. Our image covers about 100 square degrees and contains over 1000 sources. Results. The four components of the DDRG B1834+620 have been resolved for the first time at 144 MHz. Inner lobes were found to point towards the direction of the outer lobes, unlike standard FR II sources. Polarized emission was detected at +60 rad m −2 in the northern outer lobe. The high spatial resolution allows the identification of a large number of small double-lobed radio sources; roughly 10% of all sources in the field are doubles with a separation smaller than 1. Conclusions. The spectral fit of the four components is consistent with a scenario in which the outer lobes are still active or the jets recently switched off, while emission of the inner lobes is the result of a mix-up of new and old jet activity. From the presence of the newly extended features in the inner lobes of the DDRG, we can infer that the mechanism responsible for their formation is the bow shock that is driven by the newly launched jet. We find that the density of the small doubles exceeds the density of FR II sources with similar properties at 1.4 GHz, but this difference becomes smaller for low flux densities. Finally, we show that the significant challenges of wide-field imaging (e.g., time and frequency variation of the beam, directional dependent calibration errors) can be solved using LOFAR commissioning data, thus demonstrating the potential of the full LOFAR telescope to discover millions of powerful AGN at redshift z ∼ 1.

Collaboration


Dive into the E. de Geus's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Philip Best

University of Edinburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Alexov

Space Telescope Science Institute

View shared research outputs
Top Co-Authors

Avatar

G. Bernardi

Smithsonian Institution

View shared research outputs
Top Co-Authors

Avatar

H. R. Butcher

Australian National University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge