Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where E. De Vries is active.

Publication


Featured researches published by E. De Vries.


Scientific Reports | 2013

Adaptation of novel H7N9 influenza A virus to human receptors

J. C. F. M. Dortmans; Jojanneke Dekkers; I. N. Ambepitiya Wickramasinghe; Monique H. Verheije; Peter J. M. Rottier; F.J.M. van Kuppeveld; E. De Vries; C. A. M. de Haan

The emergence of the novel H7N9 influenza A virus (IAV) has caused global concerns about the ability of this virus to spread between humans. Analysis of the receptor-binding properties of this virus using a recombinant protein approach in combination with fetuin-binding, glycan array and human tissue-binding assays demonstrates increased binding of H7 to both α2-6 and α2-8 sialosides as well as reduced binding to α2-3-linked SIAs compared to a closely related avian H7N9 virus from 2008. These differences could be attributed to substitutions Q226L and G186V. Analysis of the enzymatic activity of the neuraminidase N9 protein indicated a reduced sialidase activity, consistent with the reduced binding of H7 to α2-3 sialosides. However, the novel H7N9 virus still preferred binding to α2-3- over α2-6-linked SIAs and was not able to efficiently bind to epithelial cells of human trachea in contrast to seasonal IAV, consistent with its limited human-to-human transmission.


Veterinary Parasitology | 2010

Cytokine gene expression in response to Haemonchus placei infections in Nelore cattle.

L. G. Zaros; Patrizia A. Bricarello; Alessandro Francisco Talamini do Amarante; R. A. Rocha; F.N.J. Kooyman; E. De Vries; L. L. Coutinho

This study aimed to evaluate the expression of a subset of cytokine genes in response to Haemonchus placei infections in Nelore cattle presenting different degrees of resistance to natural infections. One hundred weaned bulls, initially 11-12 months old, were evaluated and kept on the same pasture. Faecal and blood samples were collected for parasitological and immunological assays. The seven most resistant and the eight most susceptible animals were selected based on nematode faecal egg counts (FEC) and worm burden. Serum was collected to measure antibody titres, and abomasum and abomasal lymph node tissue samples were collected to analyse the expression of a subset of cytokine genes (IL-2, IL-4, IL-8, IL-12p35, IL-13, TNF-alpha, IFN-gamma, MCP-1, MCP-2, MUC-1) using real-time RT-PCR. Mast cells, eosinophils and globule leukocytes in the abomasal mucosa were enumerated, and IgA levels in the mucus were assessed. Gene expression analysis in the abomasal tissue indicated that IL-4 and IL-13 (TH2 cytokines) were up-regulated in the resistant group, whereas TNF-alpha (TH1/TH2 cytokine) was up-regulated in the susceptible group. In abomasal lymph nodes, IL-4 and IFN-gamma were up-regulated in the resistant and susceptible groups, respectively. In the resistant group, serum IgG1 levels were higher against antigens of H. placei infective larvae on days 14, 42, 70 and 84 and against antigens of H. placei adults on day 84 (P<0.05). The resistant group had higher mast cell counts in the abomasal mucosa than the susceptible group (P<0.05). These results indicate a protective TH2-mediated immune response against H. placei in the resistant group and a less protective TH1 response in the susceptible group.


Molecular Reproduction and Development | 1999

Cloning and expression of the zebrafish germ cell nuclear factor

Arie Koen Braat; Matthijs A. Zandbergen; E. De Vries; B. van der Burg; Jan Bogerd; H.J.Th. Goos

Nuclear orphan receptors are DNA‐binding proteins that share the domain structure of the nuclear hormone receptor superfamily, although their ligands are unknown. Members of the nuclear receptor family are involved in the regulation of various developmental and reproductive processes. We have identified such a nuclear orphan receptor in the zebrafish and named it zebrafish germ cell nuclear factor (zfGCNF) based on its high sequence homology to previously described mouse, human, and Xenopus laevis GCNF. Detailed sequence comparison of zfGCNF with mouse, human, and frog GCNF revealed high homologies in the domains conserved in the nuclear receptor family. Homology in the DNA‐binding domain is 97% for frog and even 98.5% for mouse and human when compared to the zebrafish sequence. Homology in the E III subdomain of the transactivation/ligand‐binding E domain is 100% when compared to the mouse and human sequences. Transcripts of different size were detected by Northern blot analysis in the zebrafish ovary, whereas, in the testis only one transcript was present. In situ hybridization revealed that zfGCNF was predominantly expressed in previtellogenic oocytes in the ovary and in spermatocytes in the testis. Mol. Reprod. Dev. 53:369–375, 1999. 


International Journal of Antimicrobial Agents | 1999

Inhibition of the in vitro growth of Plasmodium falciparum by acyclic nucleoside phosphonates.

Louis J.J.W. Smeijsters; Frits Franssen; Lieve Naesens; E. De Vries; Antonín Holý; Jan Balzarini; E. De Clercq; J.P. Overdulve

Forty-eight acyclic nucleoside phosphonates (putative prodrugs of acyclic nucleoside triphosphate inhibitors of DNA replication) have been evaluated for in vitro antiplasmodial activity. Only certain purine derivatives with a hydroxyl group attached to the acyclic sugar moiety displayed antiplasmodial activity. The two most active analogs were (S)-9-(3-hydroxy-2-phosphonylmethoxypropyl)adenine ((S)-HPMPA, IC50=0.18+/-0.07 microM) and (S)-3-deaza-HPMPA (IC50=0.29+/-0.08 microM). Their cyclic derivatives, containing an ester bond between the phosphonate and the hydroxyl group, were slightly less active. All tested compounds that lacked the hydroxyl group, including potent antiretrovirus analogs such as 9-(2-phosphonylmethoxyethyl)adenine (PMEA) and the (S)-HPMPA derivatives (R)-PMPA and (S)-FPMPA, did not show any activity, even at very high concentrations ( >250 microM). Similarly, pyrimidine analogs of (S)-HPMPA, such as (S)-HPMPT, (S)-HPMPU and the anti-herpesvirus analog (S)-1-(3-hydroxy-2-phosphonylmethoxypropyl) cytosine ((S)-HPMPC), were devoid of any antiplasmodial activity. In addition, 11 acyclic nucleoside (non-phosphorylated) analogs--which in contrast to the acyclic nucleoside phosphonates require the presence of a monophosphorylating enzyme for the first activation step--were tested. None of them inhibited the growth of the parasite. In short three chemical entities seem to be imperative for antiplasmodial activity: a purine base, a hydroxyl group in the acyclic side chain and a phosphonate group terminating this chain.


Journal of Virology | 2013

Evolution of the Hemagglutinin Protein of the New Pandemic H1N1 Influenza Virus: Maintaining Optimal Receptor Binding by Compensatory Substitutions

R.P. de Vries; E. De Vries; Carles Martínez-Romero; Ryan McBride; F.J.M. van Kuppeveld; Peter J. M. Rottier; Adolfo García-Sastre; James C. Paulson; C. A. M. de Haan

ABSTRACT Pandemic influenza A H1N1 (pH1N1) virus emerged in 2009. In the subsequent 4 years, it acquired several genetic changes in its hemagglutinin (HA). Mutations may be expected while virus is adapting to the human host or upon evasion from adaptive immune responses. However, pH1N1 has not displayed any major antigenic changes so far. We examined the effect of the amino acid substitutions found to be most frequently occurring in the pH1N1 HA protein before 1 April 2012 on the receptor-binding properties of the virus by using recombinant soluble HA trimers. Two changes (S186P and S188T) were shown to increase the receptor-binding avidity of HA, whereas two others (A137T and A200T) decreased binding avidity. Construction of an HA protein tree revealed the worldwide emergence of several HA variants during the past few influenza seasons. Strikingly, two major variants harbor combinations of substitutions (S186P/A137T and S188T/A200T, respectively) with opposite individual effects on binding. Stepwise reconstruction of the HA proteins of these variants demonstrated that the mutations that increase receptor-binding avidity are compensated for by the acquisition of subsequent mutations. The combination of these substitutions restored the receptor-binding properties (avidity and specificity) of these HA variants to those of the parental virus. The results strongly suggest that the HA of pH1N1 was already optimally adapted to the human host upon its emergence in April 2009. Moreover, these results are in agreement with a recent model for antigenic drift, in which influenza A virus mutants with high and low receptor-binding avidity alternate.


Research in Veterinary Science | 2002

A family of activation associated secreted protein (ASP) homologues of Cooperia punctata.

Ana Patrícia Yatsuda; M. Eysker; M.C.R Vieira-Bressan; E. De Vries

Activation-associated secreted proteins (ASP) of nematodes have been studied as potential vaccine components. In this study we report the cloning and analysis of cDNA and genomic sequences of Cooperia punctata and establish the presence of two 75% identical ASP-1 genes in C. punctata. Additional C. punctata ASP paralogues were shown to be present. Analysis of PCR products amplified from genomic DNA from a pool of worms revealed extensive sequence diversity within this family of proteins, reflecting the presence of different ASP paralogues in a single worm as well as extensive polymorphisms between different worms. ASP proteins contain a conserved region called the sperm-coating protein (SCP) domain of unknown function, which is present as a single copy in proteins from yeast and a wide range of multi-cellular organisms. Only in three nematodes has a protein composed of duplicated SCP-domains been identified. C. punctata is the first organism in which at least two such genes are found. Database searches identified similarity of the C-terminal cysteine-rich domain of ASP proteins to a nematode metallothionein motif. Cp-asp-1b was expressed in Escherichia coli and both the N-terminal and C-terminal domain were shown to be recognized by sera of C. punctata infected bovines. The description of the asp gene family of C. punctata provides the basis for more detailed studies into the extent of variation and immunological recognition of this family that may assist in rational vaccine design.


Veterinary Parasitology | 2008

Immunological responses and cytokine gene expression analysis to Cooperia punctata infections in resistant and susceptible Nelore cattle

Patrizia A. Bricarello; L.G. Zaros; L. L. Coutinho; R. A. Rocha; M. B. Silva; F.N.J. Kooyman; E. De Vries; Ana Patrícia Yatsuda; Alessandro Francisco Talamini do Amarante

Cellular and humoral immune response, as well as cytokine gene expression, was assessed in Nelore cattle with different degrees of resistance to Cooperia punctata natural infection. One hundred cattle (male, weaned, 11-12 months old), kept together on pasture, were evaluated. Faecal and blood samples were collected for parasitological and immunological assays. Based on nematode faecal egg counts (FEC) and worm burden, the seven most resistant and the eight most susceptible animals were selected. Tissue samples of the small intestine were collected for histological quantification of inflammatory cells and analysis of cytokine gene expression (IL-2, IL-4, IL-8, IL-12p35, IL-13, TNF-alpha, IFN-gamma, MCP-1, MCP-2, and MUC-1) using real-time RT-PCR. Mucus samples were also collected for IgA levels determination. Serum IgG1 mean levels against C. punctata antigens were higher in the resistant group, but significant differences between groups were only observed 14 days after the beginning of the experiment against infective larvae (L3) and 14 and 84 days against adult antigens. The resistant group also presented higher IgA levels against C. punctata (L3 and adult) antigens with significant difference 14 days after the beginning of the trial (P<0.05). In the small-intestine mucosa, levels of IgA anti-L3 and anti-adult C. punctata were higher in the resistant group, compared with the susceptible group (P<0.05). Gene expression of both T(H)2 cytokines (IL-4 and IL-13) in the resistant group and T(H)1 cytokines (IL-2, IL-12p35, IFN-gamma and MCP-1) in the susceptible group was up-regulated. Such results suggested that immune response to C. punctata was probably mediated by T(H)2 cytokines in the resistant group and by T(H)1 cytokines in the susceptible group.


Parasitology | 2004

A single nucleotide polymorphism map of the mitochondrial genome of the parasitic nematode Cooperia oncophora

M. Van Der Veer; E. De Vries

The 13,636 bp mitochondrial (mt) genome sequence of the trichostrongylid nematode Cooperia oncophora was determined. Like the mt genomes of other nematodes it is AT rich (76.75%) and cytidine is the least common nucleoside in the coding strand. There are 2 ribosomal RNA (rrn) genes, 22 transfer RNA (trn) genes and 12 protein coding genes. The relatively short AT-rich region (304 bp) and the lack of a non-coding region between two of the NADH dehydrogenase genes, nad3 and nad5, makes the mt genome of C. oncophora one of the smallest known to date, having only 525 bp of non-coding regions in total. The majority of the C. oncophora protein encoded genes are predicted to end in an abbreviated stop codon like T or TA. In total, 426 single nucleotide polymorphisms (SNP) were mapped on the mt genome of C. oncophora, which is an average of 1 polymorphism per 32 bp. The most common SNPs in the mt genome of C. oncophora were G/A (59.2%) and C/T (28.4%) transitions. Synonymous substitutions (86.4%) were favoured over non-synonymous substitutions. However, the degree of sequence conservation between individual protein genes of different parasitic nematode species did not always correspond to the relative number of non-synonymous SNPs. The mt genome sequence of C. oncophora presents the first mt genome of a member of the Trichostrongyloidea and will be of importance in refining phylogenetic relationships between nematodes. The, still limited, SNP map presented here provides a basis for obtaining insight into the genetic diversity present in the different protein coding genes, trn, rrn and non-coding regions. A more detailed study of the more variable regions will be of use in determining the population genetic structure of C. oncophora. Ultimately this knowledge will add to the understanding of the host-parasite relationship.


Parasitology | 2011

A new thrombospondin-related anonymous protein homologue in Neospora caninum (NcMIC2-like1)

Luiz Miguel Pereira; J. A. Candido-Silva; E. De Vries; Ana Patrícia Yatsuda

Neospora caninum is an Apicomplexan protozoan that has the dog as a definitive host and cattle (among other animals) as intermediate hosts. It causes encephalopathy in dogs and abortion in cows, with significant loss in worldwide livestock. As any Apicomplexan, the parasite invades the cells using proteins contained in the phylum-specific organelles, like the micronemes, rhoptries and dense granules. The aim of this study was the characterization of a homologue (denominated NcMIC2-like1) of N. caninum thrombospondin-related anonymous protein (NcMIC2), a micronemal protein previously shown to be involved in the attachment and connection with the intracellular motor responsible for the active process of invasion. A polyclonal antiserum raised against the recombinant NcMIC2-like1 functional core (thrombospondin and integrin domains) recognized the native form of NcMIC2-like1, inhibited the in vitro invasion process and localized NcMIC2-like1 at the apical complex of the parasite by confocal immunofluorescence, indicating its micronemal localization. The new molecule, NcMIC2-like1, has features that differentiates it from NcMIC2 in a substantial way to be considered a homologue.


Parasitology | 2001

A Cooperia punctata gene family encoding 14 kDa excretory-secretory antigens conserved for trichostrongyloid nematodes

Ana Patrícia Yatsuda; E. De Vries; M.C.R. Vieira Bressan; M. Eysker

A polymorphic set of 14 kDa excretory-secretory (E-S) antigen-encoding cDNAs, with similarity to a previously characterized 15 kDa E-S antigen of Haemonchus contortus, was cloned from Cooperia punctata. Five cDNAs encoding predicted proteins of 70-80% identity were sequenced. Genomic analyses of individuals proved the existence of three 14 kDa E-S antigen-encoding genes, excluding that the differences reflected polymorphisms between individuals in a population. Southern blots indicated the presence of additional members of this gene family. Thus, despite the fact that heterologously expressed C. punctata 14 kDa E-S products are shown to be recognized by immune sera, potential pitfalls in the development of a recombinant vaccine are presented by this genetic diversity. Vaccine design could be further rationalized by knowledge of the function, and possible redundancy in function, of the E-S products which is presently lacking. The limitations encountered in assigning a function to the 14/15 kDa family of E-S proteins that is thus far unique to the trichostrongyloid nematodes are discussed.

Collaboration


Dive into the E. De Vries's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

L. L. Coutinho

Escola Superior de Agricultura Luiz de Queiroz

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

L.G. Zaros

Escola Superior de Agricultura Luiz de Queiroz

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge