Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where E. Dimarellis is active.

Publication


Featured researches published by E. Dimarellis.


Journal of Geophysical Research | 2009

Density and temperatures of the upper Martian atmosphere measured by stellar occultations with Mars Express SPICAM

F. Forget; Franck Montmessin; Francisco Gonzalez-Galindo; Sebastien Lebonnois; Eric Quémerais; Aurélie Reberac; E. Dimarellis; Miguel Angel Lopez-Valverde

[1] We present one Martian year of observations of the density and temperature in the upper atmosphere of Mars (between 60 and 130 km) obtained by the Mars Express ultraviolet spectrometer Spectroscopy for Investigation of Characteristics of the Atmosphere of Mars (SPICAM). Six hundred sixteen profiles were retrieved using stellar occultations technique at various latitude and longitude. The atmospheric densities exhibit large seasonal fluctuations due to variations in the dust content of the lower atmosphere which controls the temperature and, thus, the atmospheric scale height, below 50 km. In particular, the year observed by SPICAM was affected by an unexpected dust loading around Ls = 130° which induced a sudden increase of density above 60 km. The diurnal cycle could not be analyzed in detail because most data were obtained at nighttime, except for a few occultations observed around noon during northern winter. There, the averaged midday profile is found to slightly differ from the corresponding midnight profile, with the observed differences being consistent with propagating thermal tides and variations in local solar heating. About 6% of the observed mesopause temperatures exhibits temperature below the CO 2 frost point, especially during northern summer in the tropics. Comparison with atmospheric general circulation model predictions shows that the existing models overestimate the temperature around the mesopause (above 80 to 100 km) by up to 30 K, probably because of an underestimation of the atomic oxygen concentration which controls the CO 2 infrared cooling.


Nature | 2007

A warm layer in Venus' cryosphere and high-altitude measurements of HF, HCl, H2O and HDO

Ann Carine Vandaele; Oleg Korablev; Eric Villard; Anna Fedorova; Didier Fussen; Eric Quémerais; Denis Belyaev; Arnaud Mahieux; Frank Montmessin; Christian Müller; Eddy Neefs; D. Nevejans; Valérie Wilquet; Jacques Dubois; Alain Hauchecorne; A. V. Stepanov; Imant I. Vinogradov; A. V. Rodin; Michel Cabane; Eric Chassefière; Jean-Yves Chaufray; E. Dimarellis; François Leblanc; Florence Lefevre; Patrice Rannou; E. Van Ransbeeck; L. V. Zasova; F. Forget; Sébastien Lebonnois; Dmitri Titov

Venus has thick clouds of H2SO4 aerosol particles extending from altitudes of 40 to 60 km. The 60–100 km region (the mesosphere) is a transition region between the 4 day retrograde superrotation at the top of the thick clouds and the solar–antisolar circulation in the thermosphere (above 100 km), which has upwelling over the subsolar point and transport to the nightside. The mesosphere has a light haze of variable optical thickness, with CO, SO2, HCl, HF, H2O and HDO as the most important minor gaseous constituents, but the vertical distribution of the haze and molecules is poorly known because previous descent probes began their measurements at or below 60 km. Here we report the detection of an extensive layer of warm air at altitudes 90–120 km on the night side that we interpret as the result of adiabatic heating during air subsidence. Such a strong temperature inversion was not expected, because the night side of Venus was otherwise so cold that it was named the ‘cryosphere’ above 100 km. We also measured the mesospheric distributions of HF, HCl, H2O and HDO. HCl is less abundant than reported 40 years ago. HDO/H2O is enhanced by a factor of ∼2.5 with respect to the lower atmosphere, and there is a general depletion of H2O around 80–90 km for which we have no explanation.


Journal of Geophysical Research | 2006

SPICAM IR acousto‐optic spectrometer experiment on Mars Express

Oleg Korablev; Anna Fedorova; D. Fonteyn; A. V. Stepanov; Yurii K. Kalinnikov; A. V. Kiselev; A. V. Grigoriev; V. Jegoulev; S. Perrier; E. Dimarellis; Jean-Pierre Dubois; Aurélie Reberac; E. Van Ransbeeck; B. Gondet; Franck Montmessin; Alexander V. Rodin

SPICAV IR, a part of SPICAV/SOIR suite on Venus Express, is a compact single pixel spectrometer for the spectral range of 0.65–1.7 mm based on acousto-optical tunable filter (AOTF) technology. SPICAV IR is derived from SPICAM IR operating on Mars Express, the first AOTF spectrometer in the deep space, and adapted for Venus atmosphere measurements. The spectrometer sequentially measures spectra of reflected solar radiation from Venus on the dayside and the emitted Venus radiation in spectral ‘‘windows’’ on the nightside, and works also in solar occultation mode. The spectral range is 0.65– 1.1 mm with spectral resolution of 7.8 cm � 1 , and 1–1.7 mm with spectral resolution of 5.2 cm � 1 .A description of this near-IR instrument, its calibration, in-flight performances, and the modes of operations on Venus’ orbit are presented. A brief overview of the science measurements is given: water vapor measurements in the mesosphere on the day-side and near surface on the nightside, mapping of the O2(a 1 Dg) emission at 1.27 mm, aerosol studies via polarization and scattering solar radiation at the day-side, and measurements of aerosol properties at the tops of the clouds in solar occultations.


Planetary and Space Science | 2000

The study of the martian atmosphere from top to bottom with SPICAM light on mars express

D. Fonteyn; Oleg Korablev; Eric Chassefiere; E. Dimarellis; Jean-Pierre Dubois; Alain Hauchecorne; Michel Cabane; Patrice Rannou; A.C. Levasseur-Regourd; Guy Cernogora; Eric Quémerais; C. Hermans; Gaston Kockarts; C. Lippens; M. De Mazière; David H. Moreau; C. Muller; B. Neefs; Paul C. Simon; F. Forget; Frederic Hourdin; Olivier Talagrand; V.I. Moroz; A. V. Rodin; Bill R. Sandel; A. Stern

Abstract SPICAM Light is a small UV-IR instrument selected for Mars Express to recover most of the science that was lost with the demise of Mars 96, where the SPICAM set of sensors was dedicated to the study of the atmosphere of Mars (Spectroscopy for the investigation of the characteristics of the atmosphere of mars). The new configuration of SPICAM Light includes optical sensors and an electronics block. A UV spectrometer (118–320 nm, resolution 0.8 nm) is dedicated to Nadir viewing, limb viewing and vertical profiling by stellar occultation (3.8 kg). It addresses key issues about ozone, its coupling with H2O, aerosols, atmospheric vertical temperature structure and ionospheric studies. An IR spectrometer (1.2– 4.8 μm , resolution 0.4–1 nm) is dedicated to vertical profiling during solar occultation of H2O, CO2, CO, aerosols and exploration of carbon compounds (3.5 kg). A nadir looking sensor for H2O abundances (1.0– 1.7 μm , resolution 0.8 nm) is recently included in the package (0.8 kg). A simple data processing unit (DPU, 0.9 kg) provides the interface of these sensors with the spacecraft. In nadir orientation, SPICAM UV is essentially an ozone detector, measuring the strongest O3 absorption band at 250 nm in the spectrum of the solar light scattered back from the ground. In the stellar occultation mode the UV Sensor will measure the vertical profiles of CO2, temperature, O3, clouds and aerosols. The density/temperature profiles obtained with SPICAM Light will constrain and aid in the development of the meteorological and dynamical atmospheric models, from the surface to 160 km in the atmosphere. This is essential for future missions that will rely on aerocapture and aerobraking. UV observations of the upper atmosphere will allow study of the ionosphere through the emissions of CO, CO+, and CO2+, and its direct interaction with the solar wind. Also, it will allow a better understanding of escape mechanisms and estimates of their magnitude, crucial for insight into the long-term evolution of the atmosphere. The SPICAM Light IR sensor is inherited from the IR solar part of the SPICAM solar occultation instrument of Mars 96. Its main scientific objective is the global mapping of the vertical structure of H2O, CO2, CO, HDO, aerosols, atmospheric density, and temperature by the solar occultation. The wide spectral range of the IR spectrometer and its high spectral resolution allow an exploratory investigation addressing fundamental question of the possible presence of carbon compounds in the Martian atmosphere. Because of severe mass constraints this channel is still optional. An additional nadir near IR channel that employs a pioneering technology acousto-optical tuneable filter (AOTF) is dedicated to the measurement of water vapour column abundance in the IR simultaneously with ozone measured in the UV. It will be done at much lower telemetry budget compared to the other instrument of the mission, planetary fourier spectrometer (PFS).


Advances in Space Research | 2002

An AOTF-based spectrometer for the studies of Mars atmosphere for Mars Express ESA mission

Oleg Korablev; A.V. Grigoriev; E. Dimarellis; Yu. K. Kalinnikov; A. V. Rodin; C. Muller; D. Fonteyn

The SPICAM Light optical package on the ESA Mars Express mission is dedicated to the nadir and limb observations in the UV between 118 nm and 320 nm, and has originally included an IR solar occultation channel, an inheritance of the IR part of the SPICAM solar occultation instrument for Mars 96. Because of severe mass constrains of the mission this channel has been replaced by a lightweight (0.7 kg) near infrared instrument that employs a new technology acousto-optical tuneable filter (AOTF). This channel is dedicated to the nadir measurements of water vapour column abundance in the near infrared between 1 and 1.7 μm simultaneously with ozone measured in the UV. In addition to the measurements of water vapour column abundance in the band of 1.38 μm, the NIR nadir spectrometer will measure the CO2 quantity in the bands of 1.43, 1.57-1.6 μm, and, consequently, the surface pressure (with known topography); and will contribute to the studies of atmospheric aerosols and the surface, by spectro-polarimetry measurements. Fully functional model of the instrument has been assembled, has been undergone a number of tests; the spectra of terrestrial atmospheric transmittance have been recorded. The scientific context of the experiment will be discussed along with the instruments description; current development status and the calibration results will be presented.


International Symposium on Optical Science and Technology | 2002

AOTF-based spectrometer for Mars atmosphere sounding

Oleg Korablev; E. Dimarellis; A.V. Grigoriev; Yurii K. Kalinnikov; A. V. Stepanov; S. Guibert

The SPICAM Light optical package on the ESA Mars Express mission is dedicated to the nadir, limb, solar and stellar occultation observations in the UV and NIR spectral ranges. A lightweight (~0.7 kg) near infrared channel of this instrument employs an acousto-optic tunable filter (AOTF). To our knowledge it is one of the first spectroscopic applications of the AOTF on a civilian spacecraft. A single-pixel spectrometer will sequentially measure the spectrum of reflected solar radiation from Mars between 1 and 1.7 μm with spectral resolution of 3.5 cm-1, and spatial resolution of ~6 km from 250-km Mars Express orbit. A fiber-coupled solar entry allows profiling of the Martian atmosphere in solar occultations. A chosen configuration of the AOTF conserves both polarizations allowing therefore spectro-polarimetry measurements. The main scientific objectives of the instrument are the measurements of vapor column abundance simultaneously with ozone (measured in the UV channel) and retrieving of H2O profiles in solar occultations. The flight model of the instrument is assembled and calibrated. Future development of the instrument including employing a multipixel linear array for cross-track mapping and extension of the spectral range is discussed.


Cosmic Research | 2006

Exploration of Mars in SPICAM-IR experiment onboard the Mars-Express spacecraft: 1. Acousto-optic spectrometer SPICAM-IR

Oleg Korablev; J. L. Bertaux; Yu. K. Kalinnikov; Anna Fedorova; V.I. Moroz; A. V. Kiselev; A. V. Stepanov; A.V. Grigoriev; V. S. Zhegulev; A. V. Rodin; E. Dimarellis; Jean-Pierre Dubois; Aurélie Reberac; E. Van Ransbeeck; B. Gondet

The acousto-optic spectrometer of the near infrared range, which is a part of the spectrometer SPICAM onboard the Mars-Express spacecraft, began to operate in the orbit of Mars in January 2004. In the SPICAM experiment, a spectrometer on the basis of an acousto-optic filter was used for the first time to investigate other planets. During one and a half years of operation, the IR channel of SPICAM obtained more than half a million spectra in the 1–1.7 μm range with a resolving power of more than 1500 in different modes of observation: limb, nadir, and solar eclipses. The main goal of the experiment is to study the content of water vapor in the Martian atmosphere by measuring the absorption spectrum in the 1.38 μm band. Characteristics of the instrument (high spectral resolution and signal-to-noise ratio) allow one to solve a number of additional scientific problems including the study of ozone distribution by emission of singlet oxygen (O21Δg), detection of the water and carbonic dioxide ices, and also the study of the vertical distribution and optical characteristics of aerosol in the Martian atmosphere. We present a description of the instrument, the results of its ground and in-flight calibrations, and a brief survey of the basic scientific results obtained by the SPICAM spectrometer during a year-and-half of operation.


Planetary and Space Science | 2007

SPICAV on Venus Express: Three spectrometers to study the global structure and composition of the Venus atmosphere

D. Nevejans; Oleg Korablev; Eric Villard; Eric Quémerais; Eddy Neefs; Franck Montmessin; François Leblanc; Jean-Pierre Dubois; E. Dimarellis; Alain Hauchecorne; Frank Lefèvre; Pascal Rannou; Jean-Yves Chaufray; Michel Cabane; Guy Cernogora; Gilbert Souchon; Frantz Semelin; Aurélie Reberac; E. Van Ransbeek; Sophie Berkenbosch; Roland Clairquin; C. Muller; F. Forget; Frédéric Hourdin; Olivier Talagrand; A. V. Rodin; Anna Fedorova; A. V. Stepanov; Imant I. Vinogradov; A. V. Kiselev


Science | 2005

Nightglow in the Upper Atmosphere of Mars and Implications for Atmospheric Transport

François Leblanc; S. Perrier; Eric Quémerais; Oleg Korablev; E. Dimarellis; Aurélie Reberac; F. Forget; Paul C. Simon; S. A. Stern; Bill R. Sandel


Icarus | 2006

Subvisible CO2 ice clouds detected in the mesosphere of Mars

Franck Montmessin; Eric Quémerais; Oleg Korablev; Pascal Rannou; Francois Forget; S. Perrier; Didier Fussen; Sebastien Lebonnois; Aurélie Reberac; E. Dimarellis

Collaboration


Dive into the E. Dimarellis's collaboration.

Top Co-Authors

Avatar

Oleg Korablev

Moscow Institute of Physics and Technology

View shared research outputs
Top Co-Authors

Avatar

Eric Quémerais

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Aurélie Reberac

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

J.-L. Bertaux

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. Fonteyn

Belgian Institute for Space Aeronomy

View shared research outputs
Top Co-Authors

Avatar

A. V. Rodin

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna Fedorova

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jean-Pierre Dubois

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge