Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where E. Emiel van Loon is active.

Publication


Featured researches published by E. Emiel van Loon.


Advances in Water Resources | 2002

Analytical solutions to a hillslope-storage kinematic wave equation for subsurface flow

Peter Troch; E. Emiel van Loon; Arno Hilberts

Abstract Hillslope response has traditionally been studied by means of the hydraulic groundwater theory. Subsurface flow from a one-dimensional hillslope with a sloping aquifer can be described by the Boussinesq equation [Mem. Acad. Sci. Inst. Fr. 23 (1) (1877) 252–260]. Analytical solutions to Boussinesqs equation are very useful to understand the dynamics of subsurface flow processes along a hillslope. In order to extend our understanding of hillslope functioning, however, simple models that nonetheless account for the three-dimensional soil mantle in which the flow processes take place are needed. This three-dimensional soil mantle can be described by its plan shape and by the profile curvatures of terrain and bedrock. This plan shape and profile curvature are dominant topographic controls on flow processes along hillslopes. Fan and Bras [Water Resour. Res. 34 (4) (1998) 921–927] proposed a method to map the three-dimensional soil mantle into a one-dimensional storage capacity function. Continuity and a kinematic form of Darcys law lead to quasi-linear wave equations for subsurface flow solvable with the method of characteristics. Adopting a power function of the form proposed by Stefano et al. [Water Resour. Res. 36 (2) (2000) 607–617] to describe the bedrock slope, we derive more general solutions to the hillslope-storage kinematic wave equation for subsurface flow, applicable to a wide range of complex hillslopes. Characteristic drainage response functions for nine distinct hillslope types are computed. These nine hillslope types are obtained by combining three plan curvatures (converging, uniform, diverging) with three bedrock profile curvatures (concave, straight, convex). We demonstrate that these nine hillslopes show quite different dynamic behaviour during free drainage and rainfall recharge events.


PLOS ONE | 2013

Fit-for-Purpose: Species Distribution Model Performance Depends on Evaluation Criteria – Dutch Hoverflies as a Case Study

Jesús Aguirre-Gutiérrez; Luísa G. Carvalheiro; Chiara Polce; E. Emiel van Loon; Niels Raes; Menno Reemer; Jacobus C. Biesmeijer

Understanding species distributions and the factors limiting them is an important topic in ecology and conservation, including in nature reserve selection and predicting climate change impacts. While Species Distribution Models (SDM) are the main tool used for these purposes, choosing the best SDM algorithm is not straightforward as these are plentiful and can be applied in many different ways. SDM are used mainly to gain insight in 1) overall species distributions, 2) their past-present-future probability of occurrence and/or 3) to understand their ecological niche limits (also referred to as ecological niche modelling). The fact that these three aims may require different models and outputs is, however, rarely considered and has not been evaluated consistently. Here we use data from a systematically sampled set of species occurrences to specifically test the performance of Species Distribution Models across several commonly used algorithms. Species range in distribution patterns from rare to common and from local to widespread. We compare overall model fit (representing species distribution), the accuracy of the predictions at multiple spatial scales, and the consistency in selection of environmental correlations all across multiple modelling runs. As expected, the choice of modelling algorithm determines model outcome. However, model quality depends not only on the algorithm, but also on the measure of model fit used and the scale at which it is used. Although model fit was higher for the consensus approach and Maxent, Maxent and GAM models were more consistent in estimating local occurrence, while RF and GBM showed higher consistency in environmental variables selection. Model outcomes diverged more for narrowly distributed species than for widespread species. We suggest that matching study aims with modelling approach is essential in Species Distribution Models, and provide suggestions how to do this for different modelling aims and species’ data characteristics (i.e. sample size, spatial distribution).


Ecological Applications | 2007

BIRD SPECIES AND TRAITS ASSOCIATED WITH LOGGED AND UNLOGGED FOREST IN BORNEO

Daniel F. R. Cleary; Timothy J. B. Boyle; Titiek Setyawati; Celina D. Anggraeni; E. Emiel van Loon; Steph B. J. Menken

The ecological consequences of logging have been and remain a focus of considerable debate. In this study, we assessed bird species composition within a logging concession in Central Kalimantan, Indonesian Borneo. Within the study area (approximately 196 km2) a total of 9747 individuals of 177 bird species were recorded. Our goal was to identify associations between species traits and environmental variables. This can help us to understand the causes of disturbance and predict whether species with given traits will persist under changing environmental conditions. Logging, slope position, and a number of habitat structure variables including canopy cover and liana abundance were significantly related to variation in bird composition. In addition to environmental variables, spatial variables also explained a significant amount of variation. However, environmental variables, particularly in relation to logging, were of greater importance in structuring variation in composition. Environmental change following logging appeared to have a pronounced effect on the feeding guild and size class structure but there was little evidence of an effect on restricted range or threatened species although certain threatened species were adversely affected. For example, species such as the terrestrial insectivore Argusianus argus and the hornbill Buceros rhinoceros, both of which are threatened, were rare or absent in recently logged forest. In contrast, undergrowth insectivores such as Orthotomus atrogularis and Trichastoma rostratum were abundant in recently logged forest and rare in unlogged forest. Logging appeared to have the strongest negative effect on hornbills, terrestrial insectivores, and canopy bark-gleaning insectivores while moderately affecting canopy foliage-gleaning insectivores and frugivores, raptors, and large species in general. In contrast, undergrowth insectivores responded positively to logging while most understory guilds showed little pronounced effect. Despite the high species richness of logged forest, logging may still have a negative impact on extant diversity by adversely affecting key ecological guilds. The sensitivity of hornbills in particular to logging disturbance may be expected to alter rainforest dynamics by seriously reducing the effective seed dispersal of associated tree species. However, logged forest represents an increasingly important habitat for most bird species and needs to be protected from further degradation. Biodiversity management within logging concessions should focus on maintaining large areas of unlogged forest and mitigating the adverse effects of logging on sensitive groups of species.


Integrative and Comparative Biology | 2010

Integrating Meteorology into Research on Migration

Judy Shamoun-Baranes; Willem Bouten; E. Emiel van Loon

Atmospheric dynamics strongly influence the migration of flying organisms. They affect, among others, the onset, duration and cost of migration, migratory routes, stop-over decisions, and flight speeds en-route. Animals move through a heterogeneous environment and have to react to atmospheric dynamics at different spatial and temporal scales. Integrating meteorology into research on migration is not only challenging but it is also important, especially when trying to understand the variability of the various aspects of migratory behavior observed in nature. In this article, we give an overview of some different modeling approaches and we show how these have been incorporated into migration research. We provide a more detailed description of the development and application of two dynamic, individual-based models, one for waders and one for soaring migrants, as examples of how and why to integrate meteorology into research on migration. We use these models to help understand underlying mechanisms of individual response to atmospheric conditions en-route and to explain emergent patterns. This type of models can be used to study the impact of variability in atmospheric dynamics on migration along a migratory trajectory, between seasons and between years. We conclude by providing some basic guidelines to help researchers towards finding the right modeling approach and the meteorological data needed to integrate meteorology into their own research.


PLOS ONE | 2012

From Sensor Data to Animal Behaviour: An Oystercatcher Example

Judy Shamoun-Baranes; Roeland Bom; E. Emiel van Loon; Bruno J. Ens; Kees Oosterbeek; Willem Bouten

Animal-borne sensors enable researchers to remotely track animals, their physiological state and body movements. Accelerometers, for example, have been used in several studies to measure body movement, posture, and energy expenditure, although predominantly in marine animals. In many studies, behaviour is often inferred from expert interpretation of sensor data and not validated with direct observations of the animal. The aim of this study was to derive models that could be used to classify oystercatcher (Haematopus ostralegus) behaviour based on sensor data. We measured the location, speed, and tri-axial acceleration of three oystercatchers using a flexible GPS tracking system and conducted simultaneous visual observations of the behaviour of these birds in their natural environment. We then used these data to develop three supervised classification trees of behaviour and finally applied one of the models to calculate time-activity budgets. The model based on accelerometer data developed to classify three behaviours (fly, terrestrial locomotion, and no movement) was much more accurate (cross-validation error = 0.14) than the model based on GPS-speed alone (cross-validation error = 0.35). The most parsimonious acceleration model designed to classify eight behaviours could distinguish five: fly, forage, body care, stand, and sit (cross-validation error = 0.28); other behaviours that were observed, such as aggression or handling of prey, could not be distinguished. Model limitations and potential improvements are discussed. The workflow design presented in this study can facilitate model development, be adapted to a wide range of species, and together with the appropriate measurements, can foster the study of behaviour and habitat use of free living animals throughout their annual routine.


Malaria Journal | 2009

Identifying the most productive breeding sites for malaria mosquitoes in The Gambia

Ulrike Fillinger; Heleen Sombroek; Silas Majambere; E. Emiel van Loon; Willem Takken; Steven W. Lindsay

BackgroundIdeally larval control activities should be targeted at sites that generate the most adult vectors, thereby reducing operational costs. Despite the plethora of potential mosquito breeding sites found in the floodplains of the Gambia River, about 150 km from its mouth, during the rainy season, only a small proportion are colonized by anophelines on any day. This study aimed to determine the characteristics of larval habitats most frequently and most densely populated by anopheline larvae and to estimate the numbers of adults produced in different habitats.MethodsA case-control design was used to identify characteristics of sites with or without mosquitoes. Sites were surveyed for their physical water properties and invertebrate fauna. The characteristics of 83 sites with anopheline larvae (cases) and 75 sites without (controls) were collected between June and November 2005. Weekly adult productivity was estimated with emergence traps in water-bodies commonly containing larvae.ResultsThe presence of anopheline larvae was associated with high invertebrate diversity (Odds Ratio, OR 11.69, 95% CI 5.61–24.34, p < 0.001), the presence of emergent vegetation (OR 2.83, 95% CI 1.35–5.95, p = 0.006), and algae (at borderline significance; OR 1.87, 95% CI 0.96–3.618, p = 0.065). The density of larvae was reduced in sites that were larger than 100 m in perimeter (OR 0.151; 95% CI 0.060–0.381, p < 0.001), where water was tidal (OR 0.232; 95% CI 0.101–0.533, p = 0.001), vegetation shaded over 25% of the habitat (OR 0.352; 95% CI 0.136–0.911, p = 0.031) and water conductivity was above 2,000 μS/cm (OR 0.458; 95% CI 0.220–0.990, p = 0.048). Pools produced the highest numbers of Anopheles gambiae adults compared with rice fields, floodwater areas close to the edge of the floodplain or close to the river, and stream fringes. Pools were characterized by high water temperature and turbidity, low conductivity, increased presence of algae, and absence of tidal water.ConclusionThere are few breeding sites that produce a high number of adult vectors in the middle reaches of the river in The Gambia, whereas those with low productivity are larger in area and can be found throughout the rainy season. Even though risk factors could be identified for the presence and density of larvae and productivity of habitats, the results indicate that anti-larval interventions in this area of The Gambia cannot be targeted in space or time during the rainy season.


Proceedings of the Royal Society of London. Series B, Biological Sciences | 2010

Stochastic atmospheric assistance and the use of emergency staging sites by migrants

Judy Shamoun-Baranes; Jutta Leyrer; E. Emiel van Loon; Pierrick Bocher; Frédéric Robin; Francis Meunier; Theunis Piersma

Numerous animals move vast distances through media with stochastic dynamic properties. Avian migrants must cope with variable wind speeds and directions en route, which potentially jeopardize fine-tuned migration routes and itineraries. We show how unpredictable winds affect flight times and the use of an intermediate staging site by red knots (Calidris canutus canutus) migrating from west Africa to the central north Siberian breeding areas via the German Wadden Sea. A dynamic migration model incorporating wind conditions during flight shows that flight durations between Mauritania and the Wadden Sea vary between 2 and 8 days. The number of birds counted at the only known intermediate staging site on the French Atlantic coast was strongly positively correlated with simulated flight times. In addition, particularly light-weight birds occurred at this location. These independent results support the idea that stochastic wind conditions are the main driver of the use of this intermediate stopover site as an emergency staging area. Because of the ubiquity of stochastically varying media, we expect such emergency habitats to exist in many other migratory systems, both airborne and oceanic. Our model provides a tool to quantify the effect of winds and currents en route.


Journal of the Royal Society Interface | 2008

Automatic identification of bird targets with radar via patterns produced by wing flapping

Serge Zaugg; Gilbert Saporta; E. Emiel van Loon; Heiko Schmaljohann; Felix Liechti

Bird identification with radar is important for bird migration research, environmental impact assessments (e.g. wind farms), aircraft security and radar meteorology. In a study on bird migration, radar signals from birds, insects and ground clutter were recorded. Signals from birds show a typical pattern due to wing flapping. The data were labelled by experts into the four classes BIRD, INSECT, CLUTTER and UFO (unidentifiable signals). We present a classification algorithm aimed at automatic recognition of bird targets. Variables related to signal intensity and wing flapping pattern were extracted (via continuous wavelet transform). We used support vector classifiers to build predictive models. We estimated classification performance via cross validation on four datasets. When data from the same dataset were used for training and testing the classifier, the classification performance was extremely to moderately high. When data from one dataset were used for training and the three remaining datasets were used as test sets, the performance was lower but still extremely to moderately high. This shows that the method generalizes well across different locations or times. Our method provides a substantial gain of time when birds must be identified in large collections of radar signals and it represents the first substantial step in developing a real time bird identification radar system. We provide some guidelines and ideas for future research.


Bulletin of the American Meteorological Society | 2006

A comparative analysis of the influence of weather on the flight altitudes of birds

Judy Shamoun-Baranes; E. Emiel van Loon; Hans van Gasteren; Jelmer van Belle; Willem Bouten; Luit Buurma

Abstract Birds pose a serious risk to flight safety worldwide. A Bird Avoidance Model (BAM) is being developed in the Netherlands to reduce the risk of bird–aircraft collisions. In order to develop a temporally and spatially dynamic model of bird densities, data are needed on the flight-altitude distribution of birds and how this is influenced by weather. This study focuses on the dynamics of flight altitudes of several species of birds during local flights over land in relation to meteorological conditions. We measured flight altitudes of several species in the southeastern Netherlands using tracking radar during spring and summer 2000. Representatives of different flight strategy groups included four species: a soaring species (buzzard Buteo buteo), an obligatory aerial forager (swift Apus apus), a flapping and gliding species (blackheaded gull Larus ridibundus), and a flapping species (starling Sturnus vulgaris). Maximum flight altitudes varied among species, during the day and among days. Weather sign...


PLOS ONE | 2014

Cell Turnover and Detritus Production in Marine Sponges from Tropical and Temperate Benthic Ecosystems

Brittany E. Alexander; Kevin Liebrand; Ronald Osinga; Harm G. van der Geest; Wim Admiraal; Jack P.M. Cleutjens; Bert Schutte; Fons Verheyen; Marta Ribes; E. Emiel van Loon; Jasper M. de Goeij

This study describes in vivo cell turnover (the balance between cell proliferation and cell loss) in eight marine sponge species from tropical coral reef, mangrove and temperate Mediterranean reef ecosystems. Cell proliferation was determined through the incorporation of 5-bromo-2′-deoxyuridine (BrdU) and measuring the percentage of BrdU-positive cells after 6 h of continuous labeling (10 h for Chondrosia reniformis). Apoptosis was identified using an antibody against active caspase-3. Cell loss through shedding was studied quantitatively by collecting and weighing sponge-expelled detritus and qualitatively by light microscopy of sponge tissue and detritus. All species investigated displayed substantial cell proliferation, predominantly in the choanoderm, but also in the mesohyl. The majority of coral reef species (five) showed between 16.1±15.9% and 19.0±2.0% choanocyte proliferation (mean±SD) after 6 h and the Mediterranean species, C. reniformis, showed 16.6±3.2% after 10 h BrdU-labeling. Monanchora arbuscula showed lower choanocyte proliferation (8.1±3.7%), whereas the mangrove species Mycale microsigmatosa showed relatively higher levels of choanocyte proliferation (70.5±6.6%). Choanocyte proliferation in Haliclona vansoesti was variable (2.8–73.1%). Apoptosis was negligible and not the primary mechanism of cell loss involved in cell turnover. All species investigated produced significant amounts of detritus (2.5–18% detritus bodyweight−1·d−1) and cell shedding was observed in seven out of eight species. The amount of shed cells observed in histological sections may be related to differences in residence time of detritus within canals. Detritus production could not be directly linked to cell shedding due to the degraded nature of expelled cellular debris. We have demonstrated that under steady-state conditions, cell turnover through cell proliferation and cell shedding are common processes to maintain tissue homeostasis in a variety of sponge species from different ecosystems. Cell turnover is hypothesized to be the main underlying mechanism producing sponge-derived detritus, a major trophic resource transferred through sponges in benthic ecosystems, such as coral reefs.

Collaboration


Dive into the E. Emiel van Loon's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wim Admiraal

University of Amsterdam

View shared research outputs
Top Co-Authors

Avatar

Arno Hilberts

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge