E. F. van Dishoeck
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by E. F. van Dishoeck.
Astronomy and Astrophysics | 2005
Fredrik L. Schöier; F. F. S. van der Tak; E. F. van Dishoeck; J. H. Black
Atomic and molecular data for the transitions of a number of astrophysically interesting species are summarized, in- cluding energy levels, statistical weights, Einstein A-coefficients and collisional rate coefficients. Available collisional data from quantum chemical calculations and experiments are extrapolated to higher energies (up to E/k ∼ 1000 K). These data, which are made publically available through the WWW at http://www.strw.leidenuniv.nl/∼moldata, are essential input for non-LTE line radiative transfer programs. An online version of a computer program for performing statistical equilibrium calcu- lations is also made available as part of the database. Comparisons of calculated emission lines using different sets of collisional rate coefficients are presented. This database should form an important tool in analyzing observations from current and future (sub)millimetre and infrared telescopes.
Astronomy and Astrophysics | 2007
F. F. S. van der Tak; J. H. Black; Fredrik L. Schöier; D.J. Jansen; E. F. van Dishoeck
Abstract: The large quantity and high quality of modern radio and infrared line observations require efficient modeling techniques to infer physical and chemical parameters such as temperature, density, and molecular abundances. We present a computer program to calculate the intensities of atomic and molecular lines produced in a uniform medium, based on statistical equilibrium calculations involving collisional and radiative processes and including radiation from background sources. Optical depth effects are treated with an escape probability method. The program is available on the World Wide Web at http://www.sron.rug.nl/~vdtak/radex/index.shtml . The program makes use of molecular data files maintained in the Leiden Atomic and Molecular Database (LAMDA), which will continue to be improved and expanded. The performance of the program is compared with more approximate and with more sophisticated methods. An Appendix provides diagnostic plots to estimate physical parameters from line intensity ratios of commonly observed molecules. This program should form an important tool in analyzing observations from current and future radio and infrared telescopes. Note: Accepted by AA 18 A4 pages, 11 figures;
Astrophysical Journal Supplement Series | 1986
E. F. van Dishoeck; J. H. Black
The limitations of steady state models of interstellar clouds are explored by means of comparison with observational data corresponding to clouds in front of Zeta Per, Zeta Oph, Chi Oph, and Omicron Per. The improved cloud models were constructed to reproduce the observed H and H2(J) column densities for several lines of sight. The main difference from previous models is the treatment of self-shielding in the H2 lines. Other improvements over previous models are discussed as well.
Astronomy and Astrophysics | 2009
R. Visser; E. F. van Dishoeck; J. H. Black
Aims. Photodissociation by UV light is an important destruction mechanism for carbon monoxide (CO) in many astrophysical environments, ranging from interstellar clouds to protoplanetary disks. The aim of this work is to gain a better understanding of the depth dependence and isotope-selective nature of this process. Methods. We present a photodissociation model based on recent spectroscopic data from the literature, which allows us to compute depth-dependent and isotope-selective photodissociation rates at higher accuracy than in previous work. The model includes self-shielding, mutual shielding and shielding by atomic and molecular hydrogen, and it is the first such model to include the rare isotopologues C17O and 13C17O. We couple it to a simple chemical network to analyse CO abundances in diffuse and translucent clouds, photon-dominated regions, and circumstellar disks. Results. The photodissociation rate in the unattenuated interstellar radiation field is 2.6
The Astrophysical Journal | 2001
E. I. Chiang; M. K. Joung; Michelle J. Creech-Eakman; Chunhua Qi; Jacqueline E. Kessler; Geoffrey A. Blake; E. F. van Dishoeck
\times
Astronomy and Astrophysics | 2009
Karin I. Öberg; Robin T. Garrod; E. F. van Dishoeck; Harold Linnartz
10-10 s-1, 30% higher than currently adopted values. Increasing the excitation temperature or the Doppler width can reduce the photodissociation rates and the isotopic selectivity by as much as a factor of three for temperatures above 100 K. The model reproduces column densities observed towards diffuse clouds and PDRs, and it offers an explanation for both the enhanced and the reduced N(12CO)/N(13CO) ratios seen in diffuse clouds. The photodissociation of C17O and 13C17O shows almost exactly the same depth dependence as that of C18O and 13C18O, respectively, so 17O and 18O are equally fractionated with respect to 16O. This supports the recent hypothesis that CO photodissociation in the solar nebula is responsible for the anomalous 17O and 18O abundances in meteorites. Grain growth in circumstellar disks can enhance the N(12CO)/N(C17O) and N(12CO)/N(C18O) ratios by a factor of ten relative to the initial isotopic abundances.
The Astrophysical Journal | 1999
Perry Alexander Gerakines; D. C. B. Whittet; Pascale Ehrenfreund; A.C.A. Boogert; A. G. G. M. Tielens; W. A. Schutte; J. E. Chiar; E. F. van Dishoeck; Timo Prusti; Frank Helmich; Th. de Graauw
We improve upon the radiative, hydrostatic equilibrium models of passive circumstellar disks constructed by Chiang & Goldreich. New features include (1) an account for a range of particle sizes, (2) employment of laboratory-based optical constants of representative grain materials, and (3) numerical solution of the equations of radiative and hydrostatic equilibrium within the original two-layer (disk surface plus disk interior) approximation. We systematically explore how the spectral energy distribution (SED) of a face-on disk depends on grain size distributions, disk geometries and surface densities, and stellar photospheric temperatures. Observed SEDs of three Herbig Ae and two T Tauri stars, including spectra from the Long Wavelength Spectrometer (LWS) aboard the Infrared Space Observatory (ISO), are fitted with our models. Silicate emission bands from optically thin, superheated disk surface layers appear in nearly all systems. Water ice emission bands appear in LWS spectra of two of the coolest stars. Infrared excesses in several sources are consistent with significant vertical settling of photospheric grains. While this work furnishes further evidence that passive reprocessing of starlight by flared disks adequately explains the origin of infrared-to-millimeter wavelength excesses of young stars, we emphasize by explicit calculations how the SED alone does not provide sufficient information to constrain particle sizes and disk masses uniquely.
Astrophysical Journal Supplement Series | 2012
Valentine Wakelam; Eric Herbst; Jean-Christophe Loison; Ian W. M. Smith; V. Chandrasekaran; B. Pavone; N. G. Adams; M. C Bacchus-Montabonel; Astrid Bergeat; K. Beroff; Veronica M. Bierbaum; M. Chabot; A. Dalgarno; E. F. van Dishoeck; Alexandre Faure; Wolf D. Geppert; Dieter Gerlich; Daniele Galli; Eric Hébrard; F. Hersant; Kevin M. Hickson; Pascal Honvault; Stephen J. Klippenstein; S. D. Le Picard; G. Nyman; Pascal Pernot; Stephan Schlemmer; Franck Selsis; Ian R. Sims; Dahbia Talbi
Context. Gas-phase complex organic molecules are commonly detected in the warm inner regions of protostellar envelopes, so-called hot cores. Recent models show that photochemistry in ices followed by desorption may explain the observed abundances. There is, however, a general lack of quantitative data on UV-induced complex chemistry in ices. Aims. This study aims to experimentally quantify the UV-induced production rates of complex organics in CH3OH-rich ices under a variety of astrophysically relevant conditions. Methods. The ices are irradiated with a broad-band UV hydrogen microwave-discharge lamp under ultra-high vacuum conditions, at 20–70 K, and then heated to 200 K. The reaction products are identified by reflection-absorption infrared spectroscopy (RAIRS) and temperature programmed desorption (TPD), through comparison with RAIRS and TPD curves of pure complex species, and through the observed effects of isotopic substitution and enhancement of specific functional groups, such as CH3, in the ice. Results. Complex organics are readily formed in all experiments, both during irradiation and during the slow warm-up of the ices after the UV lamp is turned off. The relative abundances of photoproducts depend on the UV fluence, the ice temperature, and whether pure CH3OH ice or CH3OH:CH4/CO ice mixtures are used. C2H6 ,C H 3CHO, CH3CH2OH, CH3OCH3, HCOOCH3, HOCH2CHO and (CH2OH)2 are all detected in at least one experiment. Varying the ice thickness and the UV flux does not affect the chemistry. The derived product-formation yields and their dependences on different experimental parameters, such as the initial ice composition, are used to estimate the CH3OH photodissociation branching ratios in ice and the relative diffusion barriers of the formed radicals. At 20 K, the pure CH3OH photodesorption yield is 2.1(±1.0) × 10 −3 per incident UV photon, the photo-destruction cross section 2.6(±0.9) × 10 −18 cm 2 . Conclusions. Photochemistry in CH3OH ices is efficient enough to explain the observed abundances of complex organics around protostars. Some complex molecules, such as CH3CH2OH and CH3OCH3, form with a constant ratio in our ices and this can can be used to test whether complex gas-phase molecules in astrophysical settings have an ice-photochemistry origin. Other molecular ratios, e.g. HCO-bearing molecules versus (CH2OH)2, depend on the initial ice composition and temperature and can thus be used to investigate when and where complex ice molecules form.
The Astrophysical Journal | 2000
J. E. Chiar; A. G. G. M. Tielens; D. C. B. Whittet; W. A. Schutte; A. C. A. Boogert; D. Lutz; E. F. van Dishoeck; Max P. Bernstein
Spectra of interstellar CO2 ice absorption features at a resolving power of lambda/Delta lambda approximate to 1500-2000 are presented for 14 lines of sight. The observations were made with the Short-Wavelength Spectrometer (SWS) of the Infrared Space Observatory (ISO). Spectral coverage includes the primary stretching mode of CO2 near 4.27 mu m in all sources; the bending mode near 15.2 mu m is also detected in 12 of them. The selected sources include massive protostars (Elias 29 [in rho Oph], GL 490, GL 2136, GL 2591, GL 4176, NGC 7538 IRS 1, NCC 7538 IRS 9, S140, W3 IRS 5, and W33 A), sources associated with the Galactic Center (Sgr A*, GCS 3 I, and GCS 4), and a background star behind a quiescent dark cloud in Taurus (Elias 16); they thus probe a diverse range of environments. Column densities of interstellar CO2 ice relative to H2O ice fall in the range 10%-23%: this ratio displays remarkably little variation for such a physically diverse sample. Comparison of the observed profiles with laboratory data for CO2-bearing ice mixtures indicates that CO2 generally exists in at least two phases, one polar (H2O dominant) and one nonpolar (CO2 dominant). The observed CO2 profiles may also be reproduced when the nonpolar components are replaced with thermally annealed ices. Formation and evolutionary scenarios for CO2 and implications for grain mantle chemistry are discussed. Our results support the conclusion that thermal annealing, rather than energetic processing due to UV photons or cosmic rays, dominates the evolution of CO2-bearing ices.
Astronomy and Astrophysics | 2009
G. W. Fuchs; H. M. Cuppen; S. Ioppolo; C. Romanzin; S. E. Bisschop; Stefan Andersson; E. F. van Dishoeck; Harold Linnartz
We present a novel chemical database for gas-phase astrochemistry. Named the KInetic Database for Astrochemistry (KIDA), this database consists of gas-phase reactions with rate coefficients and uncertainties that will be vetted to the greatest extent possible. Submissions of measured and calculated rate coefficients are welcome, and will be studied by experts before inclusion into the database. Besides providing kinetic information for the interstellar medium, KIDA is planned to contain such data for planetary atmospheres and for circumstellar envelopes. Each year, a subset of the reactions in the database (kida.uva) will be provided as a network for the simulation of the chemistry of dense interstellar clouds with temperatures between 10 K and 300 K. We also provide a code, named Nahoon, to study the time-dependent gas-phase chemistry of zero-dimensional and one-dimensional interstellar sources.