Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where E. Fiona Bailey is active.

Publication


Featured researches published by E. Fiona Bailey.


Journal of Neurophysiology | 2009

Genioglossus and Intrinsic Electromyographic Activities in Impeded and Unimpeded Protrusion Tasks

Lora J. Pittman; E. Fiona Bailey

Eight muscles invest the human tongue: four extrinsic muscles have external origins and insert into the tongue body and four intrinsic muscles originate and terminate within the tongue. Previously, we noted minimal activation of the genioglossus tongue muscle during impeded protrusion tasks (i.e., having subjects push the tongue against a force transducer), suggesting that other muscles play a role in the production of tongue force. Accordingly, we sought to characterize genioglossus tongue muscle activities during impeded and unimpeded protrusion tasks (i.e., having subjects slowly and smoothly move the tongue out of their mouth). Electromyographic (EMG) and single motor-unit potentials of the extrinsic genioglossus muscle were recorded with tungsten microelectrodes and EMG activities of intrinsic tongue muscles were recorded with hook-wire electrodes inserted into the anterior tongue body. Tongue position was detected by an isotonic transducer coupled to the tongue tip. Protrusive force was detected by a force transducer attached to a rigid bar. Genioglossus and intrinsic tongue muscles were simultaneously active in both impeded and unimpeded protrusion tasks. Genioglossus whole muscle EMG and single motor-unit activities changed faithfully as a function of tongue position, with increased discharge associated with protrusion and decreased discharge associated with retraction back to the rest position. In contrast, during the impeded protrusion task drive the genioglossus muscle remained constant as protrusion force increased. Conversely, intrinsic tongue muscle activities appropriately followed changes in both tongue position and force. Importantly, we observed significantly higher levels of intrinsic muscle activity in the impeded protrusion task. These observations suggest that protrusion of the human tongue requires activation of the genioglossus and intrinsic protrudor muscles, with the former more important for establishing anterior-posterior tongue location and the latter playing a greater role in the generation of protrusive force. A biomechanical model of these actions is provided and discussed.


The Journal of Physiology | 2003

Pressure-volume behaviour of the rat upper airway: effects of tongue muscle activation

E. Fiona Bailey; Ralph F. Fregosi

Our hypothesis was that the simultaneous activation of tongue protrudor and retractor muscles (co‐activation) would constrict and stiffen the pharyngeal airway more than the independent activation of tongue protrudor muscles. Upper airway stiffness was determined by injecting known volumes of air into the sealed pharyngeal airway of the anaesthetized rat while measuring nasal pressure under control (no‐stimulus) and stimulus conditions (volume paired with hypoglossal (XII) nerve stimulation). Stimulation of the whole XII nerves (co‐activation) or the medial XII branches (protrudor activation) effected similar increases in total pharyngeal airway stiffness. Importantly, co‐activation produced volume compression (airway narrowing) at large airway volumes (P < 0.05), but had no effect on airway dimension at low airway volumes. In comparison, protrudor activation resulted in significant volume expansion (airway dilatation) at low airway volumes and airway narrowing at high airway volumes (P < 0.05). In conclusion, both co‐activation and independent protrudor muscle activation increase airway stiffness. However, their effects on airway size are complex and depend on the condition of the airway at the time of activation.


Journal of Neurophysiology | 2011

Common Synaptic Input to the Human Hypoglossal Motor Nucleus

Christopher M. Laine; E. Fiona Bailey

The tongue plays a key role in various volitional and automatic functions such as swallowing, maintenance of airway patency, and speech. Precisely how hypoglossal motor neurons, which control the tongue, receive and process their often concurrent input drives is a subject of ongoing research. We investigated common synaptic input to the hypoglossal motor nucleus by measuring the coordination of spike timing, firing rate, and oscillatory activity across motor units recorded from unilateral (i.e., within a belly) or bilateral (i.e., across both bellies) locations within the genioglossus (GG), the primary protruder muscle of the tongue. Simultaneously recorded pairs of motor units were obtained from 14 healthy adult volunteers using tungsten microelectrodes inserted percutaneously into the GG while the subjects were engaged in volitional tongue protrusion or rest breathing. Bilateral motor unit pairs showed concurrent low frequency alterations in firing rate (common drive) with no significant difference between tasks. Unilateral motor unit pairs showed significantly stronger common drive in the protrusion task compared with rest breathing, as well as higher indices of synchronous spiking (short-term synchrony). Common oscillatory input was assessed using coherence analysis and was observed in all conditions for frequencies up to ∼ 5 Hz. Coherence at frequencies up to ∼ 10 Hz was strongest in motor unit pairs recorded from the same GG belly in tongue protrusion. Taken together, our results suggest that cortical drive increases motor unit coordination within but not across GG bellies, while input drive during rest breathing is distributed uniformly to both bellies of the muscle.


Respiratory Physiology & Neurobiology | 2011

Activities of human genioglossus motor units.

E. Fiona Bailey

Upper airway muscles play an important role in regulating airway lumen and in increasing the ability of the pharynx to remain patent in the face of subatmospheric intraluminal pressures produced during inspiration. Due to the considerable technical challenges associated with recording from muscles of the upper airway, much of the experimental work conducted in human subjects has centered on recording respiratory-related activities of the extrinsic tongue protudor muscle, the genioglossus (GG). The GG is one of eight muscles that invest the human tongue (Abd-El-Malek, 1939). All eight muscles are innervated by the hypoglossal nerve (cranial nerve XII) the cell bodies of which are located in the hypoglossal motor nucleus (HMN) of the caudal medulla. Much of the earlier work on the respiratory-related activity of XII motoneurons was based on recordings obtained from single motor axons dissected from the whole XII nerve or from whole muscle GG EMG recordings. Detailed information regarding respiratory-related GG motor unit activities was lacking until as recently as 2006. This paper examines key findings that have emerged from the last decade of work conducted in human subjects. Wherever appropriate, these results are compared with results obtained from in vitro and in vivo studies conducted in non-human mammals. The review is written with the objective of facilitating some discussion and some new thoughts regarding future research directions. The material is framed around four topics: (a) motor unit type, (b) rate coding and recruitment, (c) motor unit activity patterns, and (d) a compartment based view of pharyngeal airway control.


Journal of Neurophysiology | 2010

Tonically discharging genioglossus motor units show no evidence of rate coding with hypercapnia.

Patrick A. Richardson; E. Fiona Bailey

The genioglossus (GG) is considered the principle protrudor muscle of the human tongue. Unlike most skeletal muscles, GG electromyographic (EMG) activities are robustly preserved in sleep and thus may fulfill a critical role in preserving airway patency. Previous studies in human subjects also confirm that the GG EMG increases in response to chemoreceptor and mechanoreceptor stimulation. This increase occurs secondary to the recruitment of previously inactive motor units (MUs) and/or an increase in firing rate of already active MUs. Which strategy the nervous system uses when the synaptic drive onto GG motoneurons increases is not known. Here we report on GG whole muscle and tonic MU activities under conditions that mimic sleep, i.e., mild-moderate elevations in CO(2) (3% inspired CO(2) or the addition of a 1.0 l dead space) and elevated airway resistance. Based on previous work in rat, we hypothesized that mild hypercapnia would increase the firing rates of tonic MUs and that these effects would be further potentiated by a modest increase in airway resistance. Fine wire and tungsten microelectrodes were inserted into the GG to record whole muscle and single MU activities in 21 subjects (13 women, 8 men; 20-55 yr). Either 3% inspired CO(2) or added dead space resulted in a 200-300% increase in the amplitude of both tonic and phasic components of the whole muscle GG EMG and a doubling of minute ventilation. Despite these changes, recordings obtained from a total of 84 tonically discharging GG single MUs provide no evidence of a change in firing rate under any of the conditions. On this basis we conclude that in healthy adults, the increase in the tonic component of the whole muscle GG EMG secondary to mild hypercapnia is due almost exclusively to the recruitment of previously inactive MUs.


Journal of Neurophysiology | 2012

Cortical entrainment of human hypoglossal motor unit activities

Christopher M. Laine; Laura A. Nickerson; E. Fiona Bailey

Output from the primary motor cortex contains oscillations that can have frequency-specific effects on the firing of motoneurons (MNs). Whereas much is known about the effects of oscillatory cortical drive on the output of spinal MN pools, considerably less is known about the effects on cranial motor nuclei, which govern speech/oromotor control. Here, we investigated cortical input to one such motor pool, the hypoglossal motor nucleus (HMN), which controls muscles of the tongue. We recorded intramuscular genioglossus electromyogram (EMG) and scalp EEG from healthy adult subjects performing a tongue protrusion task. Cortical entrainment of HMN population activity was assessed by measuring coherence between EEG and multiunit EMG activity. In addition, cortical entrainment of individual MN firing activity was assessed by measuring phase locking between single motor unit (SMU) action potentials and EEG oscillations. We found that cortical entrainment of multiunit activity was detectable within the 15- to 40-Hz frequency range but was inconsistent across recordings. By comparison, cortical entrainment of SMU spike timing was reliable within the same frequency range. Furthermore, this effect was found to be intermittent over time. Our study represents an important step in understanding corticomuscular synchronization in the context of human oromotor control and is the first study to document SMU entrainment by cortical oscillations in vivo.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2008

A tasty morsel: the role of the dorsal vagal complex in the regulation of food intake and swallowing. Focus on "BDNF/TrkB signaling interacts with GABAergic system to inhibit rhythmic swallowing in the rat," by Bariohay et al.

E. Fiona Bailey

energy balance depends on the regulation of two central circuits that control feeding behavior. On one hand, the central nervous system (CNS) must coordinate and integrate appetite, food-seeking behavior, and thermoregulation. On the other hand, signals relating to satiety (e.g., from the gut) and


The Journal of Physiology | 2013

Human hypoglossal motor unit activities in exercise.

Clinton E. Walls; Christopher M. Laine; Ian J. Kidder; E. Fiona Bailey

•  Motor units (MUs) are the fundamental element of force generation. Here we document the MU activities of the airway dilator muscle genioglossus (GG) during breathing at rest and in heavy exercise. •  Based on our observations we suggest that tonic MU activity, albeit with varying degrees of respiratory modulation, is the preponderant activity in the GG motoneuron pool of healthy young adults at rest in the upright position. •  Second, we show that exercise‐driven increases in respiratory drive are associated with increased GG electromyographic activity principally due to recruitment of previously silent MUs and to a shift in the firing behaviour of already active MUs to inspiratory phase‐dependent bursting. •  Such expiration‐related inhibition may arise secondary to an exercise‐related central enhancement of motoneuron excitability that amplifies the response to afferent input.


Sleep | 2016

Inspiratory Muscle Training Improves Sleep and Mitigates Cardiovascular Dysfunction in Obstructive Sleep Apnea.

Jennifer R. Vranish; E. Fiona Bailey

STUDY OBJECTIVES New and effective strategies are needed to manage the autonomic and cardiovascular sequelae of obstructive sleep apnea (OSA). We assessed the effect of daily inspiratory muscle strength training (IMT) on sleep and cardiovascular function in adults unable to use continuous positive airway pressure (CPAP) therapy. METHODS This is a placebo-controlled, single-blind study conducted in twenty four adults with mild, moderate, and severe OSA. Subjects were randomly assigned to placebo or inspiratory muscle strength training. Subjects in each group performed 5 min of training each day for 6 w. All subjects underwent overnight polysomnography at intake and again at study close. RESULTS We evaluated the effects of placebo training or IMT on sleep, blood pressure, and plasma catecholamines. Relative to placebo-trained subjects with OSA, subjects with OSA who performed IMT manifested reductions in systolic and diastolic blood pressures (-12.3 ± 1.6 SBP and -5.0 ± 1.3 DBP mmHg; P < 0.01); plasma norepinephrine levels (536.3 ± 56.6 versus 380.6 ± 41.2 pg/mL; P = 0.01); and registered fewer nighttime arousals and reported improved sleep (Pittsburgh Sleep Quality Index scores: 9.1 ± 0.9 versus 5.1 ± 0.7; P = 0.001). These favorable outcomes were achieved without affecting apneahypopnea index. CONCLUSIONS The results are consistent with our previously published findings in normotensive adults but further indicate that IMT can modulate blood pressure and plasma catecholamines in subjects with ongoing nighttime apnea and hypoxemia. Accordingly, we suggest IMT offers a low cost, nonpharmacologic means of improving sleep and blood pressure in patients who are intolerant of CPAP.


Frontiers in Physiology | 2017

Association between Laryngeal Airway Aperture and the Discharge Rates of Genioglossus Motor Units

Amy LaCross; E. Fiona Bailey

We know very little about how muscles and motor units in one region of the upper airway are impacted by adjustments in an adjacent airway region. In this case, the focus is on regulation of the expiratory airstream by the larynx and how changes in laryngeal aperture impact muscle motor unit activities downstream in the pharynx. We selected sound production as a framework for study as it requires (i) sustained expiratory airflow, (ii) laryngeal airway regulation for production of whisper and voice, and (iii) pharyngeal airway regulation for production of different vowel sounds. We used these features as the means of manipulating expiratory airflow, pharyngeal, and laryngeal airway opening to compare the effect of each on the activation of genioglossus (GG) muscle motor units in the pharynx. We show that some GG muscle motor units (a) discharge stably on expiration associated with production of vowel sounds, (b) are exquisitely sensitive to subtle alterations in laryngeal airflow, and (c) discharge at higher firing rates in high flow vs. low flow conditions even when producing the same vowel sound. Our results reveal subtle changes in GG motor unit discharge rates that correlate with changes imposed at the larynx, and which may contribute to the regulation of the expiratory airstream.

Collaboration


Dive into the E. Fiona Bailey's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge