E. Floratos
National and Kapodistrian University of Athens
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by E. Floratos.
Nuclear Physics | 1977
E. Floratos; D.A. Ross; Christopher T C Sachrajda
We calculate the anomalous dimensions of the lowest twist, flavour non-singlet operators in the Wilson expansion to two loops. The calculation is performed using dimensional regularization and the minimal subtraction renormalization scheme. The physical relevance of our results in deep inelastic scattering is discussed.
Nuclear Physics | 1979
E. Floratos; D.A. Ross; Christopher T C Sachrajda
Abstract We complete the calculation of all parameters needed to discuss deep inelastic scattering in QCD to subleading order by calculating the anomalous dimensions of the twist-two flavour singlet operators in the Wilson expansion to two loops and the coefficient functions to order g 2 . The calculation is performed in the dimensional regularization scheme with the minimal subtraction renormalization prescription. The application of the results to deep inelastic scattering is discussed.
Journal of High Energy Physics | 2014
Minos Axenides; E. Floratos; Stam Nicolis
A bstractWe propose a finite discretization for the black hole, near horizon, geometry and dynamics. We realize our proposal, in the case of extremal black holes, for which the radial and temporal near horizon geometry is known to be
Physics Letters B | 1989
E. Floratos; J. Iliopoulos; G. Tiktopoulos
\mathrm{Ad}{{\mathrm{S}}_2}={{{\mathrm{S}\mathrm{L}\left( {2,\mathbb{R}} \right)}} \left/ {{\mathrm{S}\mathrm{O}\left( {1,1,\mathbb{R}} \right)}} \right.}
Nuclear Physics | 1977
Andrzej J. Buras; E. Floratos; D.A. Ross; Christopher T C Sachrajda
. We implement its discretization by replacing the set of real numbers
Journal of High Energy Physics | 2002
E. Floratos; Alex Kehagias
\mathbb{R}
Journal of High Energy Physics | 2003
Minos Axenides; E. Floratos; Christos Kokorelis
with the set of integers modulo N with AdS2 going over to the finite geometry
Physics Letters B | 1987
Ignatios Antoniadis; John Ellis; E. Floratos; Dimitri V. Nanopoulos; T. Tomaras
\mathrm{Ad}{{\mathrm{S}}_2}\left[ N \right]={{{\mathrm{S}\mathrm{L}\left( {2,{{\mathbb{Z}}_N}} \right)}} \left/ {{\mathrm{S}\mathrm{O}\left( {1,1,{{\mathbb{Z}}_N}} \right)}} \right.}
Physics Letters B | 1999
E. Floratos; G.K. Leontaris
. We model the dynamics of the microscopic degrees of freedom by generalized Arnol’d cat maps,
Physics Letters B | 1989
E. Floratos
\mathrm{A}\in \mathrm{SL}\left( {2,{{\mathbb{Z}}_N}} \right)